PROVERB: The Probabilistic Cruciverbalist

Greg A. Keim, Noam Shazeer, Michael L. Littman,
Sushant Agarwal, Catherine M. Cheves, Joseph Fitzgerald,
Jason Grosland, Fan Jiang, Shannon Pollard, Karl Weinmeister
Department of Computer Science
Duke University, Durham, NC 27708-0129
contact: keim@cs.duke.edu

Abstract

We attacked the problem of solving crossword puzzles
by computer: given a set of clues and a crossword grid,
try to maximize the number of words correctly filled
in. After an analysis of a large collection of puzzles,
we decided to use an open architecture in which inde-
pendent programs specialize in solving specific types
of clues, drawing on ideas from information retrieval,
database search, and machine learning. Each expert
module generates a (possibly empty) candidate list
for each clue, and the lists are merged together and
placed into the grid by a centralized solver. We used
a probabilistic representation throughout the system
as a common interchange language between subsys-
tems and to drive the search for an optimal solution.
PROVERB, the complete system, averages 95.3% words
correct and 98.1% letters correct in under 15 min-
utes per puzzle on a sample of 370 puzzles taken from
the New York Times and several other puzzle sources.
This corresponds to missing roughly 3 words or 4 let-
ters on a daily 15 x 15 puzzle, making PROVERB a
better-than-average cruciverbalist (crossword solver).

Introduction

Proverbs 022:021 That I might make thee know
the certainty of the words of truth...

Crossword puzzles are attempted daily by millions
of people, and require of the solver both an extensive
knowledge of language, history and popular culture,
and a search over possible answers to find a set that
fits in the grid. This dual task, of answering natu-
ral language questions requiring shallow, broad knowl-
edge, and of searching for an optimal set of answers for
the grid, makes these puzzles an interesting challenge
for artificial intelligence. In this paper, we describe
PROVERB, the first broad-coverage computer system
for solving crossword puzzles'. While PROVERB’s per-
formance is well below that of human champions, it
exceeds that of casual human solvers, averaging over
95% words correct over a test set of 370 puzzles.

1Crossword Maestro is a commercial solver for British-
style crosswords published by Genius 2000 Software. It is
intended as a solving aid, and while it appears quite good
at thesaurus-type clues, in informal tests it did poorly at
grid filling (under 5% words correct).

We will first describe the problem and provide
some of the insights we gained from studying a large
database of crossword puzzles, which motivated our
design choices. We will then discuss our underlying
probabilistic model and the architecture of PROVERB,
including how answers to clues are suggested by expert
modules, and how we search for an optimal fit of these
possible answers into the grid. Finally, we will present
the system’s performance on a large test suite of daily
crossword puzzles, as well as on 1998 tournament puz-
zles.

The Crossword Solving Problem

The solution to a crossword puzzle is a set of interlock-
ing words (targets) written across and down a square
grid. The solver is presented with an empty grid and a
set of clues; each clue suggests its corresponding target.
Some clue-target pairs are relatively direct: <Florida
fruit [6]: orange>?2, while others are more oblique and
based on word play: <Where to get a date [4]: palm>.
Clues are between one and at most a dozen or so words
long, averaging about 2.5 words in a sample of clues
we’ve collected.

To solve a crossword puzzle by computer, we assume
that we have both the grid and the clues in machine
readable form, ignoring the special formatting and un-
usual marks that sometimes appear in crosswords. The
crossword solving problem will be the task of return-
ing a grid of letters, given the numbered clues and a
labeled grid.

In this work, we focus on American-style crosswords,
as opposed to British-style or cryptic crosswords. By
convention, all targets are at least 3 letters in length
and long targets can be constructed by stringing mul-
tiple words together: <Don’t say another word [13]:
buttonyourlip>. Each empty square in the grid must
be part of a down target and an across target.

As this is largely a new problem domain, distinct
from crossword-puzzle creation (Ginsberg et al. 1990),
we wondered how hard crossword solving really was.

2Target appears in fixed-width font; all examples are
taken from our clue database. We will note the target
length following sample clues in this paper to indicate a
complete specification of the clue.



Puzzles
Source CWDB Train Test
New York Times (NYT) 792 10 70
Los Angeles Times (LAT) 439 10 50
USA Today (USA) 864 10 50
Creator’s Syndicate (CS) 207 10 50
CrosSynergy Syndicate (CSS) 302 10 50
Universal Crossword (UNI) 262 10 50
TV Guide (TVG) 0 10 50
Dell 969 0 0
Riddler 764 0 0
Other 543 0 0
Total 5133 70 370

Table 1: Our Crossword Database (CWDB) was drawn
from a number of machine-readable sources.

To gain some insight into the problem, we studied a
large corpus of existing puzzles. We collected 5133
crossword puzzles from a variety of sources, summa-
rized in Table 1. Several are online versions of daily
print newspaper puzzles (The New York Times, The
Los Angeles Times, The USA Today, TV Guide), from
online sites featuring puzzles (Dell, Riddler) or from
syndicates specifically producing for the online medium
(Creator’s Syndicate, CrosSynergy Syndicate). These
puzzles constitute a crossword database (CWDB) of
around 350,000 clue-target pairs, with over 250,000
of them unique, which served as a potent knowledge
source for this project.

Novelty

Human solvers improve with experience, in part be-
cause particular clues and targets tend to recur. For
example, many human solvers will recognize <Great
Lake [4]: erie> to be a common clue-target pair in
many puzzles®>. Our CWDB corresponds to the num-
ber of puzzles that would be encountered by a human
over a fourteen-year period, at a rate of one puzzle a
day.

What percentage of targets and clues in a new puz-
zle presented to our system will be in the existing
database—how novel are crossword puzzles? In Fig-
ure 1, we graph the probability of novel targets, clues,
clue-target pairs, and clue words as we increase the
number of elements in the database.

After randomizing, we looked at subsets of the
database ranging from 5,000 clues to almost 350,000.
For each subset, we calculated the percentage of the
particular item (target, clue, clue-target, clue word)
that are unique. This is an estimate for the likeli-

3The five most common targets in the database are era,
ore, area, erie and ale. The target erie appears in over
7% of puzzles. The five most common clues are “Exist,”
“Greek letter,” “Jai ____,” “Otherwise,” and “Region”. The
five most common clue-target pairs are <Exist [3]: are>,
<Jai ____[4]: alai>, <Otherwise [4]: else>, <Region [4]:
area>, and <Anger [3]: ire>.
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Figure 1: Clue and target novelty decreases with the
size of the CWDB. Given all 350,000 clues, we would
expect a new puzzle to contain 34% previously seen
clue-target pairs.

hood of the next item being novel. Given the complete
database (344,921 clues) and a new puzzle, we would
expect to have seen 91% of targets, 50% of clues, and
34% of clue-target pairs. We would also expect to have
seen 96% of the words appearing in the clues. The
CWDB clearly contains a tremendous amount of use-
ful domain-specific information.

The New York Times Crossword Puzzle

The New York Times (NYT) crossword is considered
by many to be the premiere daily puzzle. NYT editors
attempt to make the puzzles increase in difficulty from
easy on Monday to very difficult on Saturday and Sun-
day. We hoped that studying the Monday-to-Saturday
trends in the puzzles might provide insight into what
makes a puzzle hard for humans.

In Table 2, we show how the distributions of clue
types change day by day. For example, note that some
“easier” clues, such as fill-in-the-blank clues <Mai
- [3]: tai>) get less and less common as the week
goes on. In addition, clues with a trailing question
mark (<XT.V. Series? [15]: sonyrcamagnovox), which
is often a sign of a themed or pun clue, get more com-
mon. The distribution of target lengths also varies,
with words in the 6 to 10 letter range becoming much
more common from Monday to Saturday. Sunday is
not included in the table as it is a bit of an outlier on
some of these scales, partly due to the fact that the
puzzles are larger (up to 23 x 23, as opposed to 15 x 15
for the other days).

Categories of Clues

In the common syntactic categories shown in Table 2,
such as fill-in-the-blank and quoted phrases, clue struc-
ture leads to simple ways to answer those clues. For
example, given the clue <_____ miss [5]: hitors>, we



Mon Tue Wed Thu Fri  Sat

#puz 89 92 90 91 91 87
#clues 773 772 76.7 747 70.0 702
3 165 182 175 186 173 163
45 64.6 611 62.5 54.7 442 40.2
6-10 158 17.7 169 231 352 417
11-15 31 29 32 37 33 19
Blank 84 80 64 64 52 48
Blank & “” 31 31 2.7 22 20 17
Single Word  15.6 14.9 16.0 17.2 169 20.6
(Year) 14 16 19 21 25 27
Final ‘7’ 08 12 25 32 35 26

X, inaway 0.0 01 02 04 06 08

Table 2: NYT clue statistics vary by day of week.

might scan through text sources looking for all 9-letter
phrases that match on word boundaries and known let-
ters. If encounter a clue such as <Map abbr. [3]: rte>,
we might want to return a list of likely abbreviations.

In addition, a number of non-syntactic, expert cat-
egories stand out, such as synonyms (<Covered [5]:
awash), kind-of (<Kind of duck or letter [4]: dead}),
movies (<1954 mutant ants film [4]: them>), geogra-
phy (<Frankfurt’s river [4]: oder>), music (<‘Upside
down’ singer [4]: ross}>) and literature (< Carroll char-
acter [5]: alices).

There are also clues that do not fit simple pattern,
but might be solved by existing information retrieval
techniques (<Nebraska tribesman [4]: otoe>). Given
the many different sources of information that can be
brought to bear to solve different types of clues, this
suggests a two-stage architecture for our solver: one
consisting of a collection of special-purpose and general
candidate-generation modules, and one that combines
the results from these modules to generate a solution to
the puzzle. This decentralized architecture allowed a
relatively large group of contributors (approximately
ten people) to contribute modules using techniques
ranging from generic word lists to highly specific mod-
ules, from string matching to general-purpose informa-
tion retrieval. The next section describes PROVERB’s
modular design.

Architecture

Figure 2 illustrates the components of PROVERB.
Given a puzzle, the Coordinator separates the clues
from the grid and sends a copy of the clue list (with
target lengths) to each Expert Module. The expert
modules generate probability-weighted candidate lists,
in isolation from the other grid constraints. Expert
modules are free to return no candidates for any clues,
or 10,000 for every one. The collection of candidate
lists is then reweighted by the Merger to compensate
for differences in module weighting, and combined into
a single list of candidates for each clue. Finally, the
Solver takes these weighted lists and searches for the
best solution it can find that also satisfies the grid con-
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Figure 2: PROVERB consists of a set of independent
communicating programs written in Java, C, C++,
and Perl.

straints.
The Implicit Distribution Modules are used by the
solver, and are described in a later section.

The Probabilistic Model

To unify the candidate-generation modules, it is im-
portant to first understand our underlying assump-
tions about the crossword-puzzle problem. First, as-
sume that crossword puzzles are created by repeat-
edly choosing words for the slots according to a par-
ticular creator’s distribution (ignore clues and cross-
ing constraints for now). After choosing the words,
if the crossing constraints are satisfied, then the cre-
ator keeps the puzzle. Otherwise, the creator draws
again. Normalizing to account for all the illegal puz-
zles generated gives us a probability distribution over
legal puzzles.

Now, suppose that for each slot in a puzzle, we had
a probability distribution over possible words for the
slot given the clue. Then, we could try to solve one
of a number of probabilistic optimization problems to
produce the “best” fill of the grid. In our work, we de-
fine “best” as the puzzle with the maximum expected
number of targets in common with the creator’s solu-
tion: the maximum expected overlap. We will discuss
this optimization more in a following section, but for
now it is important only to see that we would like to
think of candidate generation as establishing probabil-
ity distributions over possible solutions.

We will next discuss how individual modules can cre-
ate approximations to these distributions, how we can
combine them into a unified distributions, and then fi-
nally how we can search to find a good solution to the
optimization problem.

Candidate-List Generation

The first step is to have each module generate can-
didates for each clue, given the target length. Each
module returns a confidence score (how sure it is that



the answer lies in its list), and a weighted list of pos-
sible answers. For example, given the clue <Farrow of
‘Peyton Place’ [3]: mias>, the movie module returns:

1.0: 0.909091 mia, 0.010101 tom, 0.010101 kip, ---
.-+, 0.010101 ben, 0.010101 peg, 0.010101 ray

The module returns a 1.0 confidence in its list, and
gives higher weight to the person on the show with the
given last name, while giving lower weight to other cast
members.

Note that most of the modules will not be able to
generate actual probabilities distributions for the tar-
gets, and will need to make approximations. The merg-
ing step discussed next will attempt to account for the
error in these estimates by testing on training data,
and adjusting scaling parameters to compensate. It is
important for modules to be consistent, and to give
more likely candidates more weight. Also, the bet-
ter control a module exerts over the overall confidence
score when uncertain, the more the merger will “trust”
the module’s predictions.

In all, we built 30 different modules, many of which
are described briefly below. To get some sense of the
contribution of the major modules, Table 3 summa-
rizes performance on 70 puzzles, containing 5374 clues.
These puzzles were drawn from the same sources as
the test puzzles, ten from each. For each module, we
list several measures of performance: the percentage
of clues that the module guessed at, the percentage
of the time the target was in the module’s candidate
list, the average length of the returned lists, and the
percentage of clues the module “won”—it had the cor-
rect answer weighted higher than all other modules.
This final statistic is an important measure of the mod-
ule’s contribution to the system. For example, the
WordList-Big module generates over 100,000 words for
some clues, so it often has the target in its list (97%
of the time). However, since it generates so many, the
individual weight given to the target is usually lower
than that assigned by other modules, and, thus, it is
the best predictor only 0.1% of the time.

Another way of looking at the contribution of the
modules is to consider the probability assigned to each
target given the clues. Ideally, we would like all targets
to have probability 1. In general, we want to maxi-
mize the product of the probabilities assigned to the
targets, since this quantity is directly related to what
the solver will be maximizing. In Figure 3, the top
line represents the probability assigned by the Bigram
module (described later). This probability is low for
all targets, but very low for the hard targets. As we
add groups of modules, the effect on the probabilities
assigned to targets can be seen as a lowering of the
curve, which corresponds to assigning more and more
probability to the target. Note the large increase due
to the Exact Match module. Finally, notice that there
is a small segment that we do very poorly on—the tar-
gets that no module other than Bigram returns. We

Performance by set of Expert Modules
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Figure 3: The cumulative probability assigned as mod-
ule groups are added shows that different types of mod-
ules make different contributions. Each line is sorted
independently.

will later introduce extensions to the system that help
with this range.

‘Word List Modules

WordList, WordList-Big These modules ignore
their clues and return all words of the correct length
from several dictionaries. WordList contains a list
of 655,000 terms from a wide variety of sources, in-
cluding online texts, enclyopedias and dictionaries.
WordList-Big contains everything in WordList, as
well as many constructed ‘terms’, produced by com-
bining related entries in databases. This includes
combining first and last names, as well as merging
adjacent words from clues in the CWDB. WordList-
Big contains over 2.1 million terms.

WordList-CWDB WordList-CWDB contains the
58,000 unique targets in the CWDB, and returns all
targets of the appropriate length, regardless of the
clue. It weights them with estimates of their “prior”
probabilities as targets of arbitrary clues.

CWDB-Specific Modules

Exact Match This module returns all targets of
the correct length associated with this clue in the
CWDB. Confidence is based on a Bayesian calcula-
tion involving the number of exact matches of correct
and incorrect lengths.

Transformations This module learns a set of textual
transformations which, when applied to clue-target
pairs in the CWDB, generates other clue-target pairs
in the database. When faced with a new clue, it
applies all applicable transformations and returns
the results, weighted based on the previous preci-
sion/recall of these transformations. Transforma-
tions in the database include single-word substitu-
tion, removing one phrase from the beginning or end
of a clue and adding another phrase to the beginning



Module | Guess Acc Len Best

Bigram 100.0 100.0 - 0.1
WordList-Big 100.0 972 =~ 10° 1.0
WordList 1000 926 =~10* 1.7
WordList-CWDB 100.0 923 =~ 10° 2.8
ExactMatch 40.3 91.4 1.3 35.9
Transformation 32.7 79.8 1.5 8.4
KindOf 3.7 62.9 44.7 0.8
Blanks-Books 2.8 35.5 43.8 0.1
Blanks-Geo 1.8 28.1 60.3 0.1
Blanks-Movies 6.0 71.2 35.8 3.2
Blanks-Music 3.4 40.4 39.9 0.4
Blanks-Quotes 3.9 45.8 49.6 0.1
Movies 6.3 66.4 19.0 2.2
‘Writers 0.1 100.0 1.2 0.1
Compass 04 63.6 5.9 0.0
Geography 1.8 25.3  322.0 0.0
Myth 0.1 75.0 61.0 0.0
Music 0.9 11.8 49.3 0.0
‘WordNet 42.8 22.6 30.0 0.9
WordNetSyns 11.9 44.0 34 0.9
RogetSyns 9.7 42.9 8.9 0.4
MobySyns 12.0 816 4960 04
Encyclopedia 97.9 32.2  262.0 1.3
LSI-Ency 94.7 43.8  995.0 1.0
LSI-CWDB 99.1 77.6  990.0 1.2
PartialMatch 92.6 71.0 493.0 8.1
Dijkstral 99.7 84.8  620.0 4.6
Dijkstra2 99.7 82.2  996.0 8.7
Dijkstra3 99.5 80.4  285.0 13.3
Dijkstrad 99.5 80.8  994.0 0.1

Table 3: Performance on 70 puzzles (5374 clues) shows
differences in the number of targets returned (Len)
and contribution to the overall lists (Best). Also mea-
sured but not shown are the implicit modules.

or end of the clue, depluralizing a word in the clue
and pluralizing the associated target, and others.
The following is a list of several non-trivial exam-
ples from the tens of thousands of transformations
learned:

nice X ¢ X in france | X starter <> prefix with X
X for short «» X abbr X city <+ X capital

Information Retrieval Modules

Crossword clues present an interesting challenge
to traditional information retrieval (IR) techniques.
While queries of similar length to clues have been stud-
ied, the “documents” to be returned are quite differ-
ent (words or short sequences of words). In addition,
the queries themselves are often purposely phrased to
be ambiguous, and never share words with the “doc-
uments” to be returned. Despite these differences, it
seemed natural to try a variety of existing IR tech-
niques over several document collections.

Encyclopedia This module is based on an indexed
set of encyclopedia articles. For each query term,
we compute a distribution of terms “close” to the

query term in the text. A term is counted 10 — k&
times in this distribution for every time it appears
at a distance of k¥ < 10 words away from the query
term. A term is also counted once if it appears in
an article for which the query term is in the title,
or vice versa. Terms of the correct target length are
assigned scores proportional to their frequencies in
the “close” distribution, divided by their frequency
in the corpus. The distribution of scores is normal-
ized to 1. If a query contains multiple terms, the
score distributions are combined linearly according
to the log inverse frequency of the query terms in the
corpus. If the query contains very common terms
such as “as” and “and,” they are ignored.

Partial Match Consider the standard vector space

model (Salton & McGill 1983), defined by a vec-
tor space with one dimension for every word in
the dictionary. A clue is represented as a vector
in this space. For each word w a clue contains,
it gets a component in dimension w of magnitude
—log(frequency(w)).

For a clue ¢, we find all clues in the CWDB that
share words with ¢. For each such clue, we give
its target a weight based on the dot product of the
clue with ¢. The assigned weight is geometrically
interpolated between 1/size(dictionary) and 1 based
on this dot product.

LSI Latent semantic indexing (LSI) is an extension of

the vector space model that uses singular value de-
composition to identify correlations between words.
LSI has been successfully applied to the problem of
synonym selection on a standardized test (Landauer
& Dumais 1997), which is closely related to solving
crossword clues. Our LSI modules were trained on
CWDB (all clues with the same target were treated
as a document) and separately on an online ency-
clopedia and returned the closest words (by cosine)
with each clue.

Dijkstra Modules The Dijkstra modules were in-

spired by the intuition that related words either
co-occur with one another or co-occur with simi-
lar words. This suggests a measure of relatedness
based on graph distance. From a selected set of text
databases, the module builds a weighted directed
graph on the set of all terms. For each database
d and each pair of terms (¢,u) that co-occur in the
same document, we place an edge from ¢ to u in the
graph with weight,

o # documents in d containing ¢ and u
# documents in d containing ¢ '

For a one-word clue ¢, we assign a term u a
score of — log(fraction of documents containing t) —
weight(minimum weight path ¢ — u).

We find the highest scoring terms with a shortest-
path-like search. For a multi-word clue, we break
the clue into individual terms and add the scores as



computed above. The four Dijkstra modules in our
system use variants of this technique.

For databases, we used an encyclopedia index, two
thesauri, a database of wordforms and the CWDB.

Database Modules

Movie The Internet Movie Database (www . imdb . com)
is an online resource with a wealth of information
about all manner of movies and T.V. shows. This
module looks for a number of patterns in the clue
(e.g. quoted titles as in <‘Alice’ star Linda [5]:
lavin>, or Boolean operations on names as in
<Cary or Lee [5]: grant}>), and formulates queries
to a local copy of the database in a variety of forms.

Music, Literary, Geography These modules use
simple pattern matching of the clue (looking for
keywords “city”, “author”,“band” and others as in
<Iowa city [4]: ames>) to formulate a query to a
topical database. The literary database is culled
from both online and encyclopedia resources. The
geography database is from the Getty Information
Institute, with additional data supplied from online
lists.

Synonyms There are four distinct synonym mod-
ules, based on three different thesauri. Using the
WordNet (Miller et al. 1990) database, one module
looks for root forms of words in the clue, and then
finds a variety of related words (e.g. <Stroller [6]:
gocart>). In addition, a type of relevance feed-
back is used to generate lists of synonyms of syn-
onyms. Finally, if necessary, the forms of the re-
lated words are coverted back to the form of the
original clue word (number, tense, etc.), for example
<Contrives [7]: devises’.

Syntactic Modules

Fill-in-the-Blanks Over five percent of all clues in
CWDB have a blank in them. We searched a vari-
ety of databases to find clue patterns with a miss-
ing word (music, geography, movies, literary and
quotes). For example, given <‘Time ____ My Side’
(Stones hit) [4]: ison>, these modules would search
for the pattern time .... my side, allowing any
four charaters to fill the blanks, including multiple
words. In some of our pretests we also ran these
searches over more general sources of text like ency-
clopedias and archived news feeds, but for efficiency,
we left these out of the final runs.

KindOf “Kind of” clues are similar to fill-in-the-
blank clues in that they involve pattern matching
over short phrases. We identified over 50 cues that
indicate a clue of this type, for example, “starter for”
(<Starter for saxon [5]: anglo>), and “suffix with”
(<Suffix with switch or sock [4]: eroo>).

Merging Candidate Lists

After each expert module has generated a weighted
candidate list, we must somehow merge these into a

unified candidate list with a common weighting scheme
for the solver. This problem is similar to the problem
facing meta-crawler search engines in that separately
weighted return lists must be combined in a sensible
way. An advantage of this domain is ready access to
precise and abundant training data.

For a given clue, each expert module m returns a
weighted set of candidates and a numerical level of
confidence that the correct target is in this set. For
each expert module m, we set three real parameters:
scale(m), length-scale(m) and spread(m). For each
clue, we reweight the candidate set by raising each
weight to the power spread(m), then normalizing their
sum to 1. We multiply the confidence level by the
product of scale(m) and length-scale(m) *r8etensth T,
compute our combined probability distribution over
candidates, we linearly combine the modified candi-
date sets of all the modules weighted by their modified
confidence levels, and normalize the sum to 1.

The scale, length-scale and spread parameters give
the merger control over how the information returned
by an expert module is incorporated into the final can-
didate list. We set these parameters using a naive hill-
climbing technique.

The objective function for optimization is the aver-
age log probability assigned to the correct target. This
corresponds to maximizing the average log probability
assigned by the solver to the correct puzzle fill-in, since
in our model the probability of a puzzle solution is pro-
portional to the product of the prior probabilities on
the answers in each of the slots. The optimal value we
achieve on the 70 puzzle training set is 10g(355)-
Grid Filling

After realizing how much repetition occurs in cross-
words, in both targets and clues, and therefore how
well the CWDB covers the domain, one might wonder
whether this coverage is enough to constrain the do-
main to such an extent that there is not much for the
grid-filling algorithm to do. We did not find this to be
the case. Simplistic grid filling yielded only mediocre
results. As a measure of the task left to the grid-filling
algorithm, on the first iteration of solving, using just
the weighted candidate lists from the modules, only
40.9% of targets are in the top of the candidate list for
their slot. However, the grid-filling algorithm is able
to raise this to 89.4%.%

The algorithm employed by PROVERB (Shazeer,
Littman, & Keim 1999) models grid filling as an opti-
mization problem. In particular, the across and down
letter intersections establish constraints on how the
grid can be filled, and crossword-puzzle filling is often
cited as a constraint satisfaction problem. However,
in our case, we don’t just want to find any satisfy-
ing set of candidates for the slots; we want the “best”
fit. We can define “best” in several different ways, but

*On average, over the 70 NYT puzzles in the test suite.



in these tests we attempted to maximize the expected
overlap with the creator’s solution, in terms of words
correct. Other definitions of “best” include maximiz-
ing the probability of getting the entire puzzle correct,
or maximizing expected letter overlap. The decision
to use expected word overlap is motivated by the scor-
ing system used in human tournaments (see below).
Since finding the optimal solution to this problem is
intractable, we employ a variety of efficient approxi-
mations.

Implicit Distribution Modules

Our probability measure assigns probability zero to a
target that is suggested by no module and probability
zero to all solutions containing that target. There-
fore, we need to assign non-zero probability to all let-
ter sequences. Clearly, there are too many to actu-
ally list explicitly. We augmented the solver to reason
with probability distributions over candidate lists that
are implicitly represented. These Implicit Distribution
Modules generate additional candidates once the solver
can give them more information about letter probabil-
ity distributions over the slot.

The most important of these is a letter Bigram mod-
ule, which “generates” all possible letter sequences of
the given length by returning a letter bigram distribu-
tion over all possible strings, learned from the CWDB.
Because the bigram probabilities are used throughout
the solution process, this module is actually tightly in-
tegrated into the solver itself.

Note in Figure 3 that there are some clues for
which no module except Bigram is returning the tar-
get. In a pretest run on 70 puzzles, the clue-target
with the lowest probability was <Honolulu wear [14]:
hawaiianmuumuu>. This target never occurs in the
CWDB, although both muumuu and hawaiian occur
multiple times, and it gets a particularly low proba-
bility because of the many unlikely letter pairs in the
target. Once the grid-filling process is underway, we
have probability distributions for each letter in these
longer targets and this can limit our search for candi-
dates.

To address longer, multiword targets, we created
free-standing implicit distribution modules. Each im-
plicit distribution module takes a letter probability
distribution for each letter of the slot (computed
within the solver), and returns weighted candidate
lists. These lists are then added to the previous can-
didate lists, and the grid-filling algorithm continues.
This process of getting new candidates can happen sev-
eral times during the solution process.

Tetragram The tetragram module suggests candi-
dates based on a letter tetragram model, built from
the WordList-Big. We hoped this would provide a
better model for word boundaries than the bigram
model mentioned above, since this list contains many
multiword terms.

Segmenter The segmenter calculates the n most
probable word sequences with respect to both the
letter probabilities and word probabilities from sev-
eral sources (n = 10 currently) using dynamic pro-
gramming. The base word probabilities are uni-
gram word probabilities from the CWDB. In addi-
tion, the Dijkstra module (described above) suggests
the best 1000 words (with weights) given the current
clue. These weights and the unigram probabilities
are then combined for a new distribution of word
probabilities.

For example, consider the clue <Tall footwear
for rappers? [11]: hiphopboots>. Given a letter
distribution and a combined word distribution,
the segmenter returned the following top ten
during: tiptopboots, hiphoproots, hiphopbooks,

hiphoptoots, hiphopboots, hiphoproofs,
riptaproots, hippopboots, hiptaproots,
hiptapboots. Note that the reweighting done

by the Dijkstra module by examining the clue raises
the probabilites of related words like boots.

Results

To evaluate PROVERB’s performance, we ran it on a
large collection of daily puzzles, and on the most recent
human tournament puzzles.

Daily Puzzles

We tested the system on puzzles from seven daily
sources, listed in Table 1. The TV Guide puzzles go
back to 1996, but the other sources were all from be-
tween August and December of 1998. We selected 70
puzzles, 10 from each source, as training puzzles for
the system. The reweighting process described above
was trained on the 5374 clues from these 70 puzzles.
Additional debugging and modification of the modules
was done after evaluation on these training puzzles.

Having fixed the modules and reweighting param-
eters, we then ran the system on the 370 puzzles in
the final pool. The system acheived an average 95.3%
words correct, 98.1% letters correct, and 46.2% puzzles
completely correct (94.1%, 97.6%, and 37.6% without
the implicit distribution modules).

In Figure 4, we plot the scores on each of the 370
daily puzzles attempted by PROVERB, grouped by the
source. In addition, we split the NYT puzzles into
two groups: Monday through Wednesday (MTW), and
Thursday through Sunday (TFSS). As noted earlier,
there is an effort made at the NYT to make puz-
zles increasingly difficult as the week progresses, and
with respect to PROVERB’s performance they have suc-
ceeded.®

®In some of our earlier tests, there appeared to be a finer
day-by-day trend from Monday to Saturday, but there is
not enough data in this set (10 per day) to see this.
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Figure 4: PROVERB performance on a variety of daily
crossword puzzles.

Tournament Puzzles

To better gauge the system’s performance against
humans, we tested PROVERB using puzzles from
the 1998 American Crossword Puzzle Tournament
(ACPT) (Shortz 1990). The ACPT has been held an-
nually for 20 years, and was attended in 1998 by 251
people. The scoring system for the ACPT requires that
a time limit be set for each puzzle. A solver’s score
is then 10 times the number of words correct, plus a
bonus of 150 if the puzzle is completely correct. In
addition, the number of incorrect letters is subtracted
from the full minutes early the solver finishes. If this
number is positive, it is multiplied by 25 and added to
the score.

There were seven puzzles in the offical contest, with
time limits ranging from 15 to 45 minutes. We used
the same version of PROVERB described in the previous
section. The results over the 1998 puzzles are shown
in Table 4. The best human solvers at the competi-
tion finished all puzzles correctly, and the winner was
determined by finishing time (the champion averaged
under seven minutes per puzzle). Thus, while not com-
petitive with the very best human solvers, PROVERB
would have placed 213 out of 252; its score on Puz-
zle 5 exceeded that of the median human solver at the
contest.

The ACPT puzzles are very challenging, and include
tricks like multiple letters or words written in a single
grid cell, and targets written in the wrong slot. In spite
of the fact that PROVERB could not produce answers
that bend the rules in this way, it still correctly filled
in 80% of the words correctly, on average. The implicit
distribution modules (“PROVERB(I)”) helped improve
the word score on these puzzles, but brought down the
tournament score because it works more slowly.

Avg
Name Rank Total Time
> TP (Maximum) 1 13140 1:00
TP (Champion) 1 12115 6:51
JJ (75%) 62 10025 -
MF (50%) 125 8575 -
MB (25%) 187 6985 -
> PROVERB-I (24%) 190 6880 1:00
PROVERB (15%) 213 6215 9:41
PROVERB-I (15%) 215 6130  15:07

Table 4: PROVERB compared to the 251 elite human
contestants at the 1998 championship. Lines preceded
by a > indicate the theoretical score if the solver did
every puzzle in under a minute.

Conclusions

Solving crossword puzzles presents a unique artificial
intelligence challenge, demanding from a competitive
system broad world knowledge, powerful constraint
satisfaction, and speed. Because of the widespread ap-
peal, system designers have a large number of existing
puzzles to use to test and tune their systems, and hu-
mans with whom to compare.

A successful crossword solver requires many arti-
ficial intelligence techniques; in our work, we used
ideas from state-space search, probabilistic optimiza-
tion, constraint satisfaction, information retrieval, ma-
chine learning and natural language processing. We
found probability theory a potent practical tool for or-
ganizing the system and improving performance.

The level of success we acheived would probably not
have been possible five years ago, as we depended on
extremely fast computers with vast memory and disk
storage, and used tremendous amounts of data in ma-
chine readable form. Perhaps the time is ripe to use
these resources to attack other problems previously
deemed too challenging for Al
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