
Good	Code	Design	
Shannon	Duvall	

	
So	far	in	your	computing	career	you	have	probably	been	focused	on	making	functional	code.		Your	
classes	and	assessments	have	been	centered	on	the	features	of	the	software	that	are	correctly	
implemented.		That’s	pretty	reasonable,	since	code	that	doesn’t	work	is	worthless.			
	
Now	that	you	are	a	good	computer	programmer,	it’s	time	to	aspire	to	the	next	level:	being	a	good	
computer	scientist.	The	science	of	computing	starts	with	making	code	that	goes	beyond	
functionality.	This	course	is	going	to	get	you	to	think	about	two	aspects	of	code	you	have	not	before:	
its	efficiency	and	its	design.		Code	that	is	merely	functional	is	no	longer	good	enough.		Most	of	this	
course	(and	all	of	the	textbook)	is	centered	on	learning	how	to	analyze	the	efficiency	of	algorithms	
and	create	and	implement	your	own	efficient	algorithms.		This	document,	however,	focuses	on	the	
other	aspect	of	good	code:	code	design.	
	
What	is	good	code	design?	
	
In	the	article	“What	Do	Programmers	Really	Do	Anyway?”	Peter	Hallam	finds	that	he	spends	2%	of	
his	time	writing	new	code,	20%	modifying	existing	code,	and	78%	of	his	time	understanding	
existing	code.		Good	code	design	is	aimed	at	making	the	98%	of	a	coder’s	work	(reading	and	
modifying	code)	easier.	Unlike	in	a	university,	in	the	real	world	programmers	do	not	program	by	
themselves,	using	a	pre-defined	design,	on	a	completely	new	application.		Rather,	programming	is	
done	in	teams,	using	existing	code	bases,	with	design	of	the	code	as	important	a	task	as	the	
programming.	
	
Code	design	is	the	choice	of	the	structure	and	details	of	a	program.		It	is	making	large-scale	choices,	
like	whether	to	use	an	interface	or	a	superclass.		It	is	making	small-scale	choices,	like	naming	a	
variable.		Each	of	these	choices	will	make	your	code	either	easier	or	more	difficult	to	read,	
understand,	and	modify	later.	
	
The	aim	of	good	code	design	is	to	make	code	that	is:	
	

• Easy	to	read	and	understand	
• Easy	to	test	
• Easy	to	reuse	
• Easy	to	maintain,	meaning:	

o Easy	to	extend	functionality,	without	breaking	existing	code	
o Easy	to	debug	

	
There	are	many	books	on	code	design	and	we	could	spend	a	whole	course	on	it	if	we	wanted.		
Instead,	we	are	going	to	learn	the	very	basics.		I	will	use	the	vocabulary	of	Java	and	object-oriented	
programming,	even	though	the	principles	I	will	highlight	are	valid	in	any	language	or	programming	
paradigm.			
	
Don't	write	STUPID	code	
	
The	acronym	STUPID	tells	us	things	to	avoid	in	our	code:	
	

S	=	Singletons.		Singletons	are	any	object	or	variable	that	have	only	one	instantiation.		In	general,	
we	think	of	them	as	global	variables,	which	means	that	any	other	piece	of	software	can	access	it.		
Globals	are	undesirable	because	one	piece	of	code	can	change	a	value	and	affect	the	functionality	of	
code	in	some	other	place.		When	the	code	that	causes	a	phenomenon	is	far	from	the	code	that	shows	
the	phenomenon,	the	code	becomes	difficult	to	understand	and	debug.		This	is	colloquially	called	
“spooky	action	at	a	distance.”	
	
T	=	Tight	Coupling.		Coupling	is	the	degree	to	which	two	separate	pieces	of	code	are	intertwined	or	
dependent	on	one	another.		Tight	coupling	(as	opposed	to	loose	coupling)	means	that	two	pieces	of	
code	are	very	dependent	on	one	another.		This	generally	means	one	piece	cannot	be	reused,	
modified,	or	tested	without	the	other.		Instead,	each	piece	of	code	should	have	only	one	
responsibility	that	stands	alone	as	much	as	possible.	
	
U	=	Untestable	Code.	This	is	a	bit	of	an	umbrella	of	several	issues.		Code	becomes	untestable	when	
it	uses	globals,	is	tightly	coupled	with	some	other	code,	or	does	too	much	in	one	method.	
	
P	=	Premature	Optimization.		Optimizing	code	is	the	process	of	making	code	more	efficient	in	
time,	space,	or	both.		Wait!	I	thought	that	was	a	good	thing!		Well,	it	is…	to	a	certain	extent.		There	
are	levels	of	optimization.		At	a	high	level	the	optimization	has	a	large	impact	on	performance.		This	
generally	involves	choosing	the	algorithm	and	data	structure	that	is	most	efficient	(and	that’s	what	
our	course	is	about.)		But	lower	levels	of	optimization	(like	using	a	switch	statement	instead	of	an	if-
else	series)	have	very	small	effects	on	efficiency	and	almost	always	make	the	design	of	the	code	
worse1.		For	example,	consider	this	code:	
	
foo(1);
bar(1);
baz(1);
foo(2);
bar(2);
baz(2);
foo(3);
bar(3);
baz(3);
	
You	would	probably	never	write	code	this	way.		Hopefully	you	would	instead	write:	
	
for(int x = 1; x <=3; x++){
 doIt(x);
}

void doIt(int x){
 foo(x);
 bar(x);
 baz(x);
}
	

																																																								
1	No	matter	what	Joel	says.	J	

The	two	pieces	of	code	do	the	same	thing,	but	the	first	one	has	fewer	variables	and	method	calls	and	
therefore	is	more	efficient.		Why	then	do	we	prefer	the	second	way?		It	is	easier	to	read	and	debug.		
Think	about	modifying	the	code	from	iterating	1-3	to	1-5.		What	would	you	need	to	change	in	each	
example?		How	likely	are	you	to	make	a	bug?			
	
In	general,	low	levels	of	optimization	can	be	done	automatically,	when	necessary,	after	the	code	has	
been	written	with	good	design.		The	“father	of	algorithm	analysis”	Don	Knuth	wrote,	“We	should	
forget	about	small	efficiencies,	say	about	97%	of	the	time:	premature	optimization	is	the	root	of	all	
evil.	Yet	we	should	not	pass	up	our	opportunities	in	that	critical	3%.”	
	
I	=	Indescriptive	Naming.		You	should	always	use	naming	and	capitalization	conventions,	and	be	
consistent.		Favor	clarity	over	brevity.		It’s	okay	if	variable	names	are	a	bit	long	if	it	makes	clear	
what	data	they	represent.		This	may	seem	obvious,	but	it	is	actually	more	difficult	than	you’d	think	
to	devise	clear	and	concise	names.			
	
D	=	Duplicated	Code.			If	you	have	had	a	databases	class,	you	have	probably	learned	that	duplicated	
data	causes	confusion	and	problems.		It	uses	more	space	and	takes	more	effort	to	change.		But	the	
real	problem	it	creates	is	when	one	copy	is	updated	and	the	other	is	not.		At	that	point	you	cannot	
tell	which	copy	is	correct.		Duplicated	code	in	any	form	(not	just	data)	makes	code	harder	to	reuse,	
debug,	and	change.	
	
Write	SOLID	Code	
	
The	opposite	of	STUPID	code	is	SOLID	code.		The	SOLID	acronym	tells	the	hallmarks	of	good	code.		
Since	some	of	the	design	principles	are	more	involved,	we	are	only	going	to	focus	on	the	first	two:	
	
S	=	Single	Responsibility	Principle.		A	piece	of	code	should	do	one	and	only	one	thing.		If	an	object	
has	too	much	responsibility,	separate	it	into	two.		If	a	method	is	long,	break	it	up.		When	a	piece	of	
code	does	only	one	thing,	it	is	easier	to	understand,	test,	debug,	and	reuse.	
	
O	=	Open/Closed	Principle.		The	open/closed	principle	is	the	most	important	software	principle.		
The	others	in	the	SOLID	acronym	are	subsumed	by	the	open/closed	principle.		This	principle	states	
that	code	should	be	open	to	extension	and	closed	to	modification.	A	piece	of	code	is	open	to	
extension	if	it	is	written	in	such	a	way	that	adding	functionality	is	easy.	This	generally	means	the	
inheritance	hierarchies	are	in	place	so	that	adding	new	functionality	means	adding	new	subclasses.		
A	piece	of	code	is	closed	to	modification	if	existing	code	does	not	have	to	be	changed	to	add	the	
functionality.		Remember	that	any	code	that	changes	opens	itself	up	to	new	bugs	and	therefore	has	
to	be	re-tested.		The	goal	is	to	make	stable	code	that	doesn’t	need	changes	to	evolve.		When	changes	
do	need	to	be	made,	we	prefer	the	change	to	be	to	a	variable	or	data	structure	than	in	logical	code.		
The	logic	of	the	code	is	generally	where	mistakes	are	made.	
	
We	will	not	go	over	the	rest	of	the	acronym,	but	please	look	it	up	if	you	are	interested:	
	
L	=	Liskov	Substitution	Principle		
I	=	Interface	Substitution	Principle	
D	=	Dependency	Inversion	Principle	
	
These	principles	are	more	detailed	ways	of	making	code	that	follows	the	open/closed	principle.	
	

OO	Structure	
	
The	larger	design	questions	in	the	object-oriented	world	center	on	how	inheritance	hierarchies	and	
interfaces	are	defined.		Here	are	a	few	rules	of	thumb	to	keep	in	mind:	
	

• An	inheritance	structure	defines	an	is-a	relationship.		(A	BookStack	is	a	Stack)	
• Aggregation	(having	one	object	inside	another)	defines	a	has-a	relationship.	(A	BookStack	

has	a	Book)	
• Interfaces	define	an	acts-as-a2	relationship.	(A	BookStack	acts	as	a	Sortable)	

	
These	can	help	you	use	your	intuition	to	know	if	something	should	be	a	superclass,	interface,	or	
container	for	another.		When	I	was	working	as	an	interviewer,	one	of	my	favorite	Java	questions	
was	“What	is	the	difference	between	an	abstract	superclass	and	an	interface?”		The	high-level	
answer	is	that	they	define	two	different	types	of	relationships.3	
	
Code	Smells	
	
If	I	were	to	ask	any	of	you	whether	or	not	you	want	to	write	testable,	maintainable	code,	I’m	sure	
you	would	all	enthusiastically	say	yes.		So	far,	however,	the	information	has	been	pretty	academic.		
Let’s	get	to	the	details	–	how	will	I	know	if	my	code	is	SOLID	or	STUPID?		(How	will	my	professor	
know?)	The	answer	is	to	look	for	“code	smells”	–	a	construct	in	your	code	that	points	to	a	design	
flaw.		Code	smells	are	not	bugs,	they	are	symptoms	of	violating	the	principles	we	have	talked	about.		
Just	as	“debugging”	is	removing	bugs	from	your	code,	the	process	of	removing	code	smells	and	
other	poor	design	choices	is	called	“refactoring”.		Refactoring	improves	the	design	of	code	without	
changing	its	functionality.		Here	are	some	common	code	smells:	
	

• Duplicated	code.		If	you	ever	have	the	urge	to	copy-and-paste	while	coding,	stop	and	think	
about	design.	

• Large	classes	or	methods.		Make	sure	you	follow	the	single	responsibility	principle.	
• Inappropriate	intimacy/	Feature	Envy.		This	is	when	one	class	depends	on	the	details	of	

another	class.		Look	for	code	that	has	a	lot	of	get()	calls	on	another	object.		This	is	a	
symptom	of	tight	coupling.	

• Freeloader.		A	class	or	method	that	does	too	little.			
• Cyclomatic	complexity.		This	is	too	many	branches	(if	statements)	or	loops	within	loops.		

Complex	reasoning	is	difficult	to	understand	and	should	be	broken	up.	
• Too	many	parameters.		If	there	are	lots	of	parameters	for	a	method	it	is	a	sign	that	they	

might	work	better	as	an	object.		This	is	especially	true	if	those	same	variables	are	seen	
together	more	than	once.		If	variables	travel	together,	they	are	coupled	and	should	be	
encapsulated	as	an	object.	

• Magic	Numbers.		This	term	refers	to	literals	of	any	kind	in	the	code.		These	values	are	good	
candidates	for	constants.		They	generally	are	used	multiple	times	in	the	code	and	are	likely	
to	be	modified	in	future	versions	of	the	code.	

																																																								
2	While	“is-a”	and	“has-a”	are	well	known	terms	you	will	find	in	textbooks,	“acts-as-a”	is	not.		That’s	
a	Shannon	original.	
3	A	good	answer	includes	more	technical	details,	like	the	fact	that	objects	can	implement	multiple	
interfaces	but	not	multiple	superclasses,	and	superclasses	have	state	and	interfaces	usually	do	not.	

• Too	few	or	too	many	comments.		Too	few	comments	means	that	code	is	hard	to	understand,	
and	too	many	comments	sometimes	means	that	code	is	too	complex	or	the	variable	and	
method	names	aren’t	self-explanatory.		I	rarely	see	students	use	too	many	comments,	but	I	
often	see	too	few.		Do	NOT	wait	until	your	code	is	finished	before	you	comment.			

	
In	addition	to	these	well-known	code	smells,	here	are	some	I	find	particularly	annoying:	

• Long	if	statement	chain	(if	…	else	if…	else	if…	else	if…	or	a	switch	statement).		This	is	one	
form	of	“cyclomatic	complexity”	as	stated	above.		It	almost	always	has	some	duplication	in	it,	
and	it	is	open	to	modification.		The	fix	for	long	if	statements	is	almost	always	to	change	the	
design	to	use	a	map	or	an	inheritance	structure.	

• Using	misleading	code,	like	a	number	that	is	either	0	or	1	rather	than	a	boolean.		I	have	seen	
students	use	String	constants	“1”,	“2”,	etc…		This	is	unnecessarily	confusing.	

• if(foo){
return true;

 }
 else{
 return false;
 }
	

I	see	this	code	all	too	often.		It	is	unnecessarily	complex	and	shows	a	lack	of	understanding	of	
how	to	use	booleans.		This	logic	should	be	written	simply	as:	

	
	 return foo;

• Public	instance	variables	and	methods.		If	no	one	else	needs	it,	make	it	private.		Protect	your	
code	from	inappropriate	intimacy.

• Unnecessary	getters	and	setters.		Do	not	get	in	the	habit	of	automatically	making	getters	and	
setters	for	all	your	instance	variables.		If	you	do	that,	then	you	may	as	well	have	made	them	
public.		Write	them	only	as	needed.		Resist	the	urge	to	provide	vanilla	setters.		At	the	very	
least,	make	sure	the	given	value	is	appropriate.

• Instance	variables	that	should	be	local.		An	instance	variable	is	supposed	to	be	an	attribute	
variable.		That	means	it	should	be	a	vital	attribute	to	the	class	as	a	whole.		Students	
mistakenly	think	all	large	data	structures	should	be	instance	variables,	but	this	is	only	true	if	
it	prevents	duplicated	code	or	makes	sense	intuitively	as	an	instance	variable.		It	is	
preferable	to	have	local	variables	and	to	pass	values	through	parameters	and	returns	of	
method	calls.			Remember	that	making	variables	instance	variables	opens	up	their	scope	so	
they	can	be	modified	by	other	pieces	of	code.		

• Use	of	the	keyword	“instanceof”.		Using	this	keyword	almost	always	shows	a	place	where	an	
inheritance	hierarchy	should	be	used.

• Overuse	of	the	“static”	keyword.		There	is	nothing	inherently	wrong	with	static	variables	or	
methods	if	used	correctly.		However,	static	variables	are	sometimes	used	like	global	
variables.		I	also	often	see	students	make	something	static	and	when	I	ask	them	why	the	
answer	is	“eclipse	told	me	to”	or	“I	have	to	for	this	to	compile.”		These	aren’t	good	reasons	–	
they	are	indications	of	a	lack	of	understanding.

• Long	main	methods	or	classes.		The	main	method	is,	by	definition,	static!		It	generally	should	
be	just	the	starting	point	of	the	application	and	not	include	logic	(that	cannot	be	reused).		It	
should	be	in	its	own	class	(called	Main)	so	that	many	main	methods	can	be	implemented	and	
you	can	run	a	portion	of	the	application	for	testing.

	
When	I	grade	your	code,	I	will	have	a	list	of	code	smells	that	I’m	looking	for.		Finding	them	shows	
me	the	design	flaws.		You	should	do	this	with	your	own	code.		Once	you	find	the	flaw,	try	to	fix	it.		If	
you	can’t,	ask	me	and	I	will	be	happy	to	help	you.	
	
A	Caveat	
	
Sometimes	we	tend	to	be	all-or-nothing	thinkers.		You	really	can’t	approach	code	smells	(or	life)	
this	way.		There	are	times	when	it	is	legitimate	to	make	a	long	method	or	public	instance	variables	
or	even	switch	statements4.		Sometimes	design	is	a	tradeoff	between	competing	principles	and	you	
have	to	choose	the	lesser	of	evils.		Code	smells	are	simply	indications	that	problems	might	exist	in	
the	design.		If	I	see	them,	you	will	have	to	justify	them	to	me.		I	find	that	90%	of	the	time,	the	code	
smell	is	a	better	design	trying	to	get	my	attention.	
	
Final	Advice	
	
You	have	now	learned	the	vocabulary	of	code	design.		Did	you	notice	how	forceful	the	vocabulary	
is?	(STUPID,	SOLID,	smelly?)		This	stuff	matters,	and	people	feel	very	strongly	about	it.		Now	that	
you	know	the	principles,	you	need	to	practice	refactoring.		This	document	gives	facts	but	few	
examples.		You	can	find	plenty	of	them	online,5	but	you	really	learn	refactoring	by	doing	it.		At	first	it	
will	seem	like	a	lot	of	work	to	refactor	your	code	before	you	turn	it	in,	but	you	will	get	faster	with	
practice.			
	
I	would	like	you	to	cultivate	the	habit	of	writing	code	in	small	pieces.		You	should	write,	test,	debug,	
and	comment	each	piece	before	you	move	on	to	the	next.		Doing	so	helps	you	think	about	the	design	
as	you	build	and	saves	you	time	debugging	in	the	long	run.		Resist	the	urge	to	start	at	the	last	
minute,	panic,	and	bang	out	a	bunch	of	lousy	code	at	the	last	minute.			Better	quality	of	life*	
emotional	high,	rhythm	of	working,	lack	of	general	confusion,	lack	of	high	stress/high	panic	
situations	
	
Remember	that	we	are	aiming	for	a	higher	standard	than	“functional”	code.	Over	time	you	will	learn	
to	adhere	to	better	design	faster	and	your	code	will	be	much	better	for	it.			
	

																																																								
4	Don’t	tell	Joel	I	said	that.		
5	Google	“Java	refactoring	examples”	

