As an introduction to this chapter, let’s start with an anecdote. A couple of years ago, one of the authors to this book and his wife traveled to IKEA, the Scandinavian home furnishings mega-store. They bought their children, who were four and six years old at the time, a table with chairs for them to use as an art table. This table is small, round, brightly colored and made of plastic. Like many things purchased these days, some assembly was required. Inside the boxes that the table and chairs were packaged in was a tabletop comprised of seats, backs and legs. Well, obviously, some instructions were needed! As expected, they were included in the boxes of parts. What was unexpected was that the instructions for both the table and the chairs were two sheets of paper—two simple, 8.5” x 11” sheets of paper! Furthermore, none of the pieces of paper contained any text elements outside of the IKEA logo. There were no written instructions whatsoever.

The instructions for putting the table and the chairs together were delivered completely in picture format. Images and diagrams were used to explain the entire assembly process. Somewhat skeptical of this instructional strategy, the couple realized halfway into assembling the first chair that they didn’t need any text; the images were sufficient. This is interesting for two reasons: 1) IKEA made the realization that images often speak as well or better than words. The table and chairs went together without any problems; in fact, it’s quite conceivable that, words might have complicated the process. If, for no other reason, text would simply have taken longer to digest than it would to process the images. 2) The instructions were delivered without any need for text. Yes, we know, we’ve already stated that. But think about it for a minute. IKEA is an international company. Its products are sold in many places around the world through bricks-and-mortar retail stores and through an online catalog. Normally, a company that sells their wares interna-
tionally that require you to assemble or sometimes even use their products will provide an instruction manual with the product that is translated into a large selection of languages. Furthermore, the typical instruction manual is often comprised of numerous pages. The thickness of many instruction manuals is due largely to the simple fact that the relevant information must be replicated in multiple languages. In stark contrast to the norm, the instructions from IKEA required only two sheets of paper that were accessible and understandable by all.

IKEA assembly instructions

In this example, images were used to effectively communicate a step-driven procedure quickly and accurately. The use of images enabled the manufacturer to transcend the need for written text—in one, or more, languages—and to simplify the communication of a reasonably complex procedure into a set of simple illustrations and diagrams. We’re hard pressed to choose a better example that communicates the power of imagery. However, we’ll give it a shot.

Imagine you’re an American graduate student studying abroad in the Czech Republic for six weeks. Traveling and living in a foreign country where you don’t speak the language is a wonderful opportunity for realizing the limitations of a written language. Living in Prague on a student’s budget means that several visits to the grocery store will likely be necessary to keep you fed. Assuming that you’re like most people and not on overly adventurous eater, you’re probably not much inclined to buy any product in a Czech grocery store if you’re not first able to determine what exactly is contained inside the package. Since most food products are packaged—almost everything for sale in a grocery store except produce—then you’ll naturally need to rely on label imagery to tell you what’s inside. If the packaging contains only textual elements, then you might decide to skip that food item. Given that you’re on a budget, you probably don’t want to spend money on a food product only to find out that it’s something that you aren’t willing to consume.
In this case, the reliance on imagery equates to survival. While that statement may be somewhat overly dramatic, the simple fact is that if you’re studying or living abroad, you might be somewhat reluctant to buy a food item if you cannot first determine what it is, its ingredients, or how it is prepared. Being completely illiterate in Czech (the native language) you would be forced to rely on imagery for the information that you need. Whether that imagery incorporates photography or illustrations, you will likely need something visual to propel you to make a purchase. Luckily, most grocery stores sell food items that possess packaging that offers at least a small hint of what lies in wait on the inside. Thank the stars for images!

If you need more confirmation that we live in an image dominant world, just think of any time that you’ve traveled to a foreign country and been in a car or bus. Whether you were actually driving or not, its easy to appreciate the need to comprehend basic traffic signs in order to arrive safely at your destination. Thankfully most places in the world use simple illustrations as a primary component in the design of traffic signage. Given this scenario and the preceding anecdotes, it’s not hard to see that we often greatly benefit from—and are sometimes utterly dependent on—visual imagery for instructions, directions, and basic communication.

Okay, enough with the anecdotes. Hopefully we’re now in agreement that visual imagery is a powerful medium for, among other things, a wide range of communication tasks. Just in case, you’re not convinced remember the age-old adage (that many attribute to Napoleon Bonaparte) that you’ve certainly heard before: a picture is worth a thousand words. If this saying is even partially true, then why? What aspects of brain function are responsible for our ability to form meaning from a visual image almost immediately? In the rest of this chapter we’ll explore how the mind and eye work together to drive our visual perception abilities toward meaningful experiences.

Every day you’re confronted with an enormous amount of visual stimuli. You make sense of this overwhelming amount of information by paying attention to the things that you need to see and ignoring the rest. One of your initial challenges in learning to become an effective visual communicator is to gain an understand-
ing of the way your mind makes sense of what your eyes see. What techniques do your brain employ to turn visual sensory information into something meaningful? By understanding why you pay more attention to certain visual information than you do to others or why you categorize what you see, you will be able to leverage this knowledge as you attempt to create effective visual communication artifacts. In your efforts to become more aware of the cognitive aspects of visual perception and how they inform your creative process, you will need to examine several principles and theories of visual perception including gestalt, semiotics, figure-ground relationships and more.

Gestalt Theory

The word gestalt means “organized whole.” Gestalt psychology describes a set of visual perception theories concerned with how your brain perceives what you see with your eyes and makes meaning from the resulting images. In the simplest definition, gestalt theory describes the ways in which your brain is inclined to arrange what you see when interpreting visual information into meaningful groups. Another simple way to describe this effect is that your brain strives to organize what you see with your eyes into distinct patterns of visual information. Gestalt theorists have determined different laws or theories that describe several related but separate reasons for how and why your brain tends towards this pattern-making/grouping effect. As we explore the concept of gestalt further, keep in mind that these theories are based purely on what objects look like and not on anything specific to their true nature or intellectual meaning.

When you read printed writing, you digest words instead of letters as you attempt to derive meaning from the text that you read. You do not read letter-by-letter but rather word-by-word. Each word that you read becomes a unique form representing the entity that it describes. Gestalt theory says that the reason you read words as wholes instead of their component parts—letterforms—is because your brain’s first tendency is to group words based on proximity (one of the principles of gestalt theory). If the words in a sentence or paragraph contained no spaces you’d cease to see unique word forms. In a sense, the spaces in a sentence—though
meaningless in and of themselves—are as important to your ability to understand what you read as the actual words are. Thus, the gestalt phenomenon in the case of reading is based on the principle of proximity. Because a word is a simple arrangement of letters in close proximity to one another, we come to recognize it as a unique entity.

When you look at the face of someone you know well, what do you see? What does your brain translate for you from the image of a person before your eyes? You see that person, of course. Yet there’s no denying that if you examine your friend’s features, you also see the component parts that make up that person’s face: nose, eyes, mouth, ears, hair and so on. Again, the principles of gestalt tell you that when you look at something and try to make meaning of what you see, you tend to interpret the sum of the parts—a grouping effect, if you will—rather than the component pieces.

Think a scene in which you see a flock of Canada Geese traversing the sky on their way to some watery destination. Yes, you certainly see a number of geese flying together but you also can easily see a “V” that comes from the particular formation in which the birds usually fly. The gestalt principle of continuity is at play in this example. As you look at the formation of geese, you tend to see a continuous line of birds that make the shape of a “V.” Or envision lying on your back, gazing at the sky and trying to find images in the clouds. On the one hand, you clearly know that you’re looking at a sky full of clouds but it doesn’t take long to start to see all sorts of recognizable forms emerge from the swirls of atmosphere. You’re sensing patterns in the morass of visual information that you form into something that has meaning such as the image of an animal or a person. Though these are simple—but very common—examples of gestalt, they easily communicate the fact that your brain is constantly making meaning of what you see. In doing so, you are often ignoring the true nature of individual component parts and are interpreting—through grouping and pattern making—what you see as something altogether different.

The overall concept of gestalt is comprised of several unique principles, all of which describe different ways that your brain interprets visual phenomenon. The following are the usual suspects that emerge in a discussion of gestalt: closure, similarity, proximity,
Closure

The principle of closure illustrates how your brain is able to fill in missing information needed to completely describe what you see (as long as there is enough information available). Your brain exercises this principle all the time. Think of how often you look at objects, say someone’s house, and fully understand what you’re observing even though one or more objects may obscure our view. As you look at the structure, it’s virtually a given that you’ll be confronted with a view that contains many obscuring objects, such as trees, that prevent you from seeing a complete, unimpeded image of the house. Nonetheless, you still see a house and interpret the visual information as such.

As a simple example of the principle of closure, look at the shape to the left. Although the shape is missing some amount of information, your brain is still able to supply the missing information needed to complete the triangle. Your mind is very good at closing the gaps in an image by filling in the missing parts.

Now consider the figure at right. Again, even though information is missing, you have no problem determining what each letter in the word is as well as the word itself. Your brain “closes” each form by filling in the missing information.

Similarity

When you see things that are similar in appearance you tend to place them into groups. Similarity is the gestalt principle that describes this phenomenon. Likewise, when you view a set of items that are dissimilar, then you tend not group them. Your brain organizes what you see by grouping items that are similar to one another via comparisons in size, shape, style, tone, or color.

The image at left shows two groups of rectangular shapes. Though there are thirteen rectangles in all, you tend to see a group of black rectangles and a group of grey rectangles. The principle of similarity says that this happens for two reasons: the grey rectangles
are similar to one another in tone and they are similar in size (or scale). The same is true with the grouping of black rectangles: they are similar in tone and size. Even though all thirteen shapes are rectangles—which certainly makes them similar—your brain sees two unique sets of rectangles and puts them into separate groups.

A similar effect can be seen in the image at left. In this arrangement of simple shapes, the groupings are based on shape. You perceive the squares as being in one group while you see the circles as being in another. Even though the similar shapes are separated from one another by the opposing shape, you still tend to group them according to their similarities.

Similarity grouping effects might also be achieved via the manipulation of stylistic features as they are in the image at right. In this example, a clear grouping can be made based on the two tones used to fill the triangles. Furthermore, separation into two groups can be made based on the black outline used to stylize half of the triangle shapes. Even though there is a grouping effect that separates the total arrangement of shapes into one group on top and one on bottom (based on the principle of proximity), you can also easily separate the shapes into two distinct groups based on the different styles applied.

Proximity

The theory of proximity describes how you tend to place items that are close together into groups. Simply put, the closer two items are to one another the more likely you are to interpret them as a group. The potential for viewing separate items as a group becomes even greater when physical proximity is combined with larger numbers of items.

For example, in the figure above, you see three sets of two squares. When the squares are close together, you readily view them as a group but when moved apart you eventually perceive them as separate elements. In the illustration, the pair of squares on the left is easily perceived as a group whereas the pair on the right is not. How about the pair in the middle?
In the image above, there are nine squares in each of the three illustrations. In the illustration on the left, you tend to view eight squares as being part of a group. (The group actually looks like a cross or plus sign—this effect is achieved via one of the gestalt principles that we just explored, closure!) Conversely, the ninth square, the one in the upper left of the illustration, is viewed as a singular element. It is not part of the group. In the middle illustration, you perceive all nine squares as being part of the same group. By moving the solitary square from the illustration on the left into proximity with the other eight squares, you are now able to visually perceive it as being part of the same group as the other eight squares. In the illustration on the right side, you see a vertical grouping of five squares which was achieved by moving four of the nine squares—the two to the left and the two to the right—further away as well as through the close directional proximity of the five remaining squares. This illustration also demonstrates a sub-concept of proximity: alignment. Alignment dictates that when you observe items that are in spatial alignment with one another, you tend to place them into groups.

The figure above further demonstrates the alignment component of the principle of proximity. On the left side, you see the arrangement of star shapes as a single group. However, in the middle illustration and the one on the right, when select rows or columns of stars are removed you tend to see either vertical or horizontal groupings of shapes.
Continuity

The gestalt principle of continuity attempts to describe how your brain is willing to see something as continuous even if it is just suggested. Your mind strives to create continuous form as long as there is continuity in the direction in which a particular form or shape is traveling. In the image to the right, you perceive the image to be either a cross or plus sign or at the least as two continuous line segments. What you don’t tend to see the form as is four independent line segments that happen to share an endpoint. If you think about it, though, it’s entirely possible that this is indeed the case. The principle of continuity describes this phenomenon and the tendency that our brains have toward continuing any form or shape along the path that it is naturally traveling.

In the image above, your mind tends to interpret each of the four illustrations differently. In the first illustration, you see two distinct curves: path WY and path XYZ. You perceive two separate curves because the principle of continuity dictates that you want to extend a line, curve or shape as long as it continues to flow in a given direction—in this case your mind extends path XYZ because it is flowing in the same general direction. In the second illustration, you perceive the same two separate curves, however this time the fill and outline of the WY path are treated differently. (Your perception of continuity is strengthened because of the additional principle of similarity—via color/tone—at work.) In the third and fourth illustration, you see two different curves—XY and WYZ. In the last illustration, you arrive at a perceptual conflict. Your new friend, gestalt, is to blame. On the one hand, you want to see two separate curves that are delineated by their color: XYW and YZ. However, we also tend to see curve XYZ as being a continuous curve because of our propensity to continue the curve as it moves from point to point. Essentially, the perceptual conflict in part D
can be blamed on the tug of war going on between the gestalt principles of similarity and continuity.

Common fate

The gestalt principle of common fate suggests that items that move together, items that demonstrate the same function and/or behavioral patterns or items that point in the same direction are perceived to be in the same group. For example, assume a crowd of people at an outdoor concert. You see the entire crowd as a group because of the principle of proximity (discussed earlier in this chapter). At some point in time, five friends who are attending the concert together, and who are members of the larger crowd, leave the venue at the same time. They all move in a similar direction as they head for the same exit. As they make their way toward the exit, you perceive them as a group because they are moving together; they are exhibiting the same behavior. This is due to the principle of common fate.

Common fate can be applied to items that point in the same direction and to items that behave or function in a similar manner. Elements that move together in the same direction are perceived as being more related than items that are not moving or that are moving in different directions.

Figure-ground relationships

Figure-ground relationships, also referred to as positive-negative space, describe how your brain tends to see things as either primary elements or background information. In this way of thinking, it’s sometimes easier to think of figure-ground relationships as helping to define and separate foreground elements from background information. Figure-ground relationships define one way that you can discern form in what you look at.

When defining and describing figure-ground relationships and how your brain makes sense of them, it is necessary to discuss the principle of area (sometimes included in descriptions of Gestalt theory). Definitions of area say that that the smaller of two overlapping areas will be understood as representing figure and the larger area will be viewed as representing ground.
In the image to the right, you see a well-known symbol, the yin-yang symbol that originates from Chinese Taoism. In each half of the symbol, you can observe simple figure-ground relationships based on the principle of area. In the black half, you tend to view the small white circle as being the figure and the larger black area as being the ground. In the white half, you comprehend the visual information the same way (though the colors are reversed): the small black circle represents figure while the larger white area represents ground. It’s often helpful in simple examples like the yin-yang symbol to think of figure-ground as simply meaning foreground and background where figure equals foreground and ground equals background.

The exploitation of figure-ground relationships can be of significant value when designing graphic images such as logos. Take a look at the image below. You should see a well-known logo, one that you have little trouble recognizing. Do you see the arrow, though? Look closely; even if you’ve never noticed it before, now that you are prompted to search for it you shouldn’t have much trouble locating the arrow. It appears completely in the negative space of the image. The arrow embedded in the Federal Express logo is an excellent example of how the manipulation of positive—negative space in the design of a corporate logo can be very effective.

The concept of camouflage—something that acts as a disguise—works because we have difficulty discerning the differences in figure and ground in a scene where camouflage is used. This happens because the use of camouflage merges what we interpret as figure versus ground effectively blending foreground elements into the background. Figure-ground relationships provide the brain with information that it uses in one of two ways: to either enhance or obscure the visual meaning in a particular scene or image. In the case of camouflage, it’s the latter of these two possibilities.

Semiotics

The study of semiotics explores the use of symbols as communication devices. You regularly interpret symbols that you encounter in your daily life. When you see the U.S. flag flying, you don’t normally interpret that as a flag made of red, white, and blue
fabric. Instead, you view the flag as a symbol of the United States of America. You might also attach further meaning to the symbol depending on the greater context in which you interpret the flag: you may see the flag as a symbol of the federal government, of the country as a whole, or as a symbol of support for a particular war. Regardless of the specific interpretation, the actual flag flapping in the breeze at the top of a pole acts as a symbolic mechanism full of strong and potent meaning.

You receive and interpret semiotic elements as a regular part of your daily life. You constantly interact with signs and symbols that act as vehicles of meaning. You regularly make sense of semiotic devices as simple as mathematical symbols, such as “=” sign in an equation, to more complicated representations of global corporations, like the Nike Swoosh logo, or even symbols of sovereign nations, like the hammer and sickle that once represented the might of the Soviet Union. In reading an article in a newspaper or magazine that details the famine in a foreign country, you are likely to be presented with a photo of a malnourished child. Obviously, the story is about a larger group of people than one unfortunate child. Given that, how could such a simple image represent the suffering of a multitude?

Easy: the photograph is a basic semiotic device that acts as a symbolic representation of something much more complex. It would clearly be difficult or impossible to demonstrate, in a literal fashion, the suffering of so many in a photograph. However, by using an image of a single child the editors are able to powerfully suggest the plight of many.

As a consumer of visual media, you interpret semiotic devices constantly. Whether you’re aware of it or not, you possess sophisticated abilities that you use to parse meaning from symbols and representations, even ones that border on the abstract. As producers of visual media, you can take advantage of this fact. As you design and produce visual communication artifacts, you can and should rely on the inherent sophistication of your audience and their innate understanding of semiotics.

Patterns

Our minds tend to like patterns and are very good at making
sense of them and converting the visual information into meaning. Gestalt psychology tells us that we strive to organize visual information into meaningful patterns rather than perceive that information as distinct parts. This is one way that you make sense of what you see. When you view a repetition of elements you see the components as a continuum of visual information that you define as a pattern. This is somewhat obvious if you consider something like the pattern represented in the mosaic image to the right. Though the overall artwork is made up of an arrangement of tiles, you are able to easily recognize that there is an image of a flower represented. Your brain allows you to view the arrangement of tiles as a holistic design—not the individual parts that make up the design—that represents unique information presented in a defined pattern.

Your ability to recognize and make sense of patterns becomes more complex when you consider organic patterns such as those presented to us in nature. Considering the image below, most would agree that the subject matter is a forest though it’s easy to see that the photography is comprised of a large number of individual trees. Your innate ability to perceive patterns allows you to quickly move past the individual elements in the photograph and transform the meaning they represent as a group into something larger in context, in this case, a forest.

As a digital content producer, having an appreciation for the innate ability that human beings possess when it comes to recognizing patterns in everything, including text and images, will allow you to design visual content that is both easy to use and yet sophisticated. The incorporation of patterns in visual design elements allows end users to cognitively arrange the content into meaningful sets of information. Patterns should inform the design of everything from navigational elements found on a webpage to motion graphics typography used for a commercial advertisement.

Visual Hierarchy

The concept of hierarchy is important to consider when designing content that will be delivered to an audience. Just like the
theories of gestalt discussed earlier in this chapter, your brain likes to organize elements based on perceived importance. One way to control for this innate tendency is to consciously arrange designed content in terms of value or significance. Visual hierarchy provides users with a sense of order and an understanding of ranked value.

If you think of the front page of any newspaper, the most important articles are always given the largest headlines. The large headlines tell the viewer that a particular story is the most important item on the page. As the size of headlines decrease so does the importance of the accompanying story in relation to the rest of the page's content. This is true of non-textual elements as well. Think of a layout that makes use of photography like the one on the left from the entertainment section of the Los Angeles Times. Clearly, one of the featured entertainment stories stands out in relation to the other articles. This is communicated to you by the fact that one of the photographs is larger in size in comparison to the other images. Your brain interprets this arrangement to mean that the larger photograph is more significant than the others in the layout and, by extension, the associated article is also more important.

When you are designing visual elements, you can control the hierarchy of information through the manipulation of basic design features such as scale, weight, value, color, and spacing. Doing so will allow you to guide your users' attention in ways that facilitate their ability to create meaning from the content that you provide. For instance, think about a website that you frequently visit or a magazine article that you read recently. Was any of the text on the website or in the article larger than the rest? Was any text item set in a bold typeface? Was any design element colored or shaded in a unique fashion in comparison with other elements on the webpage? Was an image or illustration placed in a prominent place or scaled larger than others? Usually the answers to these questions and others like them will be yes. Was the use of scale, weight or color in the media that you've recently consumed haphazard or
random? Or was it deliberate and intentional? In most cases, it’s probably the latter. By emphasizing certain elements you can guide your users to make sense of the information presented and help them to consume the content in the desired order.

To look at this from the opposite angle, imagine looking at the front page of your favorite newspaper and seeing all the headlines at the same size and font weight. Would you be able to easily discern which story was the leading one for the day? Would you be able to scan the page and quickly determine a ranking of the available information that would help you make sense of the levels of importance of the content? Most likely, you would not. Content delivered without any evident visual hierarchy would quickly lose any coherent meaning. From a signal-to-noise vantage point, content that lacks hierarchical structure will largely be perceived as noise. Clearly, as content producers we don’t want this to happen!

Let’s look at another example. The same visual hierarchy logic used to design traditional media artifacts such as newspapers, books, and magazines should also be applied to the design of interactive content. The image above shows the home page of the New York Times website. Principles of visual hierarchy are present both in terms of the headlines (type size) and in the use and size of im-
ages on the page. It seems pretty obvious that the most important story is the one that concerns Goldman Sachs as indicated by the largest headline and the largest photograph on the page, both of which correspond to the article. Color is also used to emphasize headings in relation to body copy. Even physical location, obvious though it may sound, is clearly used to indicate importance. As you scan your eyes down the web page you will see that items of higher importance are featured near the top of the page while those of lesser importance appear near the bottom.

Eye Movement/Tracking

Usability experts are professionals who study the most effective ways to design visual content. They are especially interested in studying how people use interactive mechanisms such as web sites, hand held devices, software applications and the like; pretty much anything with an interface that delivers information is of interest to them. One of the aspects they are keenly interested in studying is how people view and process information as it is presented to them. When people interact with digital content, they tend to exhibit similar behavior patterns. One method of studying how people use various types of media is by tracking eye movement across visual content.

You can learn a lot about visual design best practices—what works, what doesn’t and why—by studying the results of eye tracking studies. Recent work in this area suggests many ways in which you, as a designer of visual content, can make the information that you present as interesting, salient and usable as possible. Having access to eye tracking research can make a big difference in how you design visual content to have the greatest impact on your users.

So what exactly does an eye tracking scan of how people look at displays of visual and textual information look like? When you scan a page of visual content you generally do so in F-shaped patterns. Your eyes first scan the information horizontally near the top of the page and then downward on the left-hand side. Next, you usually scan horizontally again near the middle (vertically) of the page thus forming the basic shape of the letter “F.” Of course, this doesn’t mean that people don’t look elsewhere on a page—they do!—but instead simply suggests where people are prone to look first and most often. If this knowledge were all that you could glean
from eye tracking studies, you’d still have a lot to work with. Knowing that users are keenly focused on the top and left-hand sides of something like a web page suggests that key information like headlines, important images and/or navigation elements should be placed in these areas.

There’s more though to what can be learned from eye tracking research. Text and images that aren’t accurate, precise or that are simply too small aren’t often paid much attention by users. Larger images garner closer and longer lasting views. The same is true with text. Headlines and sub-heads are essential, as users often first skim a page for interest before deciding where to spend more time. When it comes to body copy—the actual words that make up a story or article—users tend to spend more time with short, to-the-point paragraphs than they do with longer passages. In fact, recent studies suggest that people don’t often read content word-for-word. Instead, one to two paragraphs are all that most readers pay attention to. Furthermore, superfluous information, whether text or images, is usually ignored; sometimes it even gets in the way, effectively creating informational obstacle courses for users.

Navigational elements, such as buttons and links, tend to work best for users when they are designed with a clear visual approach.
and are simple in their functionality. Additionally, a consistent approach to the design of all navigational structures on a web site or page helps users to learn the information structure once and then use it over and over again to achieve their goals. When the information presented is not novel or unique, text tends to work best; for users who have some amount of knowledge of the subject, text will suffice. However, when that information is unfamiliar or conceptual then multimedia elements, especially images, tend to work better.

OK, So now what?

So now what do you do with your newly acquired knowledge of how the eye and the brain work together in an effort to make sense of the visual information that continually bombards you? How do you apply the preceding principles and theories toward your goal of becoming a savvy visual communicator? Like many intellectual activities, you first need to explore your domain and arrive at an appreciable level of understanding before you can begin to exploit that knowledge for a greater purpose, in this case crafting successful visual communication artifacts. To some extent, by reading through the introduction, you’ve already achieved some amount of understanding of your domain. What follows are some tips for transforming this new knowledge into useful design strategies:

Figure-ground relationships: Unless you’re striving to create a sense of ambiguity or confusion in your design work (sometimes that’s the goal!), you should clearly define what represents figure and what represents ground in your visual designs. Doing so will focus the attention of your viewers and will allow you to successfully communicate the most essential aspects of any visual media artifact that you create.

Patterns: Given that your brain is constantly attempting to form patterns of meaning from the chaos of raw stimuli, designing visual media that incorporates intentional patterns will help your viewers to more quickly understand the intention of your design. You can take advantage of patterns by using design devices such as grids to help provide a logical and meaningful structure on which to hang the content that you want to communicate.

Gestalt: Strong visual compositions often take advantage of
the principles of similarity and/or proximity. Clever arrangements of visual elements can be a sophisticated way to suggest subtext and imply meaning. Groupings of visual elements can create the illusion of form where there really is none through the manipulation of tone, color, shape, style and other physical attributes. The creative arrangement of text can also be used to suggest form that can work to complement or counter the actual meaning of the words themselves.

Eye tracking: As designers and communicators, you will be much better at your job if you understand as much as possible about where people look when they encounter visual content. Therefore, the whole point of understanding something about the study of eye tracking as it is applied to the consumption of visual media is simply to aid you in directing your viewers’ attention to what you want them to see. Eye tracking research shows us locations that people naturally look when they first encounter a layout of information. Placing important content in these locations is key if you want your designs to have the greatest amount of impact with the audience you’re trying to reach.

Visual hierarchy: Remember, just because you can emphasize a certain visual element doesn’t necessarily mean that you have to. You should take care to be deliberate about how you communicate the structure and order of the content that you create. By carefully delineating a visual hierarchy in your design work, you will allow consumers to best understand the information that you’ve provided.

Semiotics: In virtually all of the many types of media that you consume, you are inundated with signs and symbols, some of which convey their intended meaning effectively and some of which don’t. As a digital content producer, you must be aware of how your designs function as semiotic devices. Making astute design choices about a particular photograph, logo design, illustration or even something as simple as a color or a typeface are all important decisions that you will have to make as you craft your content.

Conclusion

Visual communication isn’t solely about look and feel, though paying attention to aesthetic principles is certainly important when
you’re trying to design visual media that makes an impact. More cerebral issues of information design and usability are also important to consider when the information that you are delivering is complex—as it often is—and when the content will be consumed by large numbers of users—all unique individuals who possess varying amounts of technical and intellectual abilities. Being a savvy visual media producer in this day and age means having a grasp not only of content development skills but also a keen awareness of how that information will be delivered, who will be receiving it and how they are likely to use it.

Successfully addressing all of these issues requires that you have an understanding of the many ways in which the human mind works when it comes to synthesizing raw visual information into meaning. As a designer and developer of visual content, you should carefully consider the principles discussed in this chapter. While aesthetics will always be important, you should keep in mind that you aren’t necessarily creating art, but are instead designing visual communication that must, at a minimum, clearly communicate a message. In the world of visual communication, the successful delivery of information is paramount.