
AlgoScrum: Improving an Algorithms Course
with Scrumage∗

Scott Spurlock and Shannon Duvall
Computer Science
Elon University
Elon, NC 27302

{sspurlock,sduvall2}@elon.edu

Abstract

We present the design of an Algorithms Analysis course, based on the
recently developed Scrumage approach, which allows students to work in
cohorts if they choose and also allows each student to choose for them-
selves how they spend class time. We describe the course structure as
well as the results from a survey to assess learning attitude outcomes.
We show that the Scrumage method resulted in students taking more
responsibility for their own learning and having improved impressions of
the course and the course material.

1 Introduction

Algorithm Analysis is at the core of computer science [13]. At our institution,
the anecdotal reputation of the course is somewhat negative, with end-of-term
surveys from prior semesters surfacing student comments such as “material
is miserable,” “so much information,” and “very confusing.” Our observations
are that students frequently struggle to engage with the material and, worse,
often display a lack of understanding of how to improve, as well as a degree of
passivity in their own learning.

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1



In order to address these issues, we re-worked the course to follow the re-
cently developed Scrumage pedagogical approach [6]. In Scrumage (SCRUM
for AGile Education), course content is divided into short (2-3 week) units
called sprints, and students work in self-organizing teams to complete require-
ments (e.g., problem sets and programming assignments). A key component of
Scrumage is that students have the freedom to choose multiple different learn-
ing approaches. Thus, one student may choose a traditional in-class lecture,
while another may prefer a flipped model, watching videos outside of class in-
stead. Students are provided with a variety of resources each sprint (textbook
readings, slides, videos, sample problems, etc.) to allow them to dynamically
choose how to learn the material.

We were interested to apply the Scrumage model to our Algorithms course
with an eye toward helping students take more responsibility for their own
learning and allowing them to have more choice in how they learn. With this
idea in mind, we redesigned the course to include five sprints, each with its
own set of assignments and a quiz at the end. Students had the freedom to
choose a team (or to work individually) each sprint and to decide how to use
the provided resources as they saw fit.

We have taught our Algorithms course using Scrumage for the past three
offerings, observing each time improving student attitudes and evidence of
metalearning, as students discover how they learn best. As instructors, we
have found the experience of adopting Scrumage to have made the teaching
process more enjoyable as students have transitioned psychologically from a
model where a teacher pushes the material at them, to a model where they are
empowered to make decisions about their own learning experience.

2 Related Work

As might be expected given the central importance of the topic, a variety
of work has been published over the years related to teaching Algorithms to
undergraduate students, including various pedagogical alterations to improve
student learning. For example, one recent paper describes modifying a tradi-
tional course to focus on group-based problem solving [3], while another adapts
a course to use an interactive e-book [9]. Including peer assessment in one algo-
rithms course helped enhance students’ critical thinking skills [5]. Other work
looks at incorporating card games [10], puzzles [12], or programming competi-
tions [8] to increase student interest.

The variety of approaches in the literature suggests that there is no single
best pedagogy for teaching Algorithms. It seems clear from the scholarship of
teaching and learning more broadly that active learning approaches are effective
[11], but there appears to be no consensus on the effectiveness of particular

2



techniques such as lecture [4], gamification [1], or a flipped model [2]. This
observation informs the development of Scrumage, which aims to allow for all
of these approaches to be available simultaneously to students within a single
classroom [6]. It is inspired by Scrum, a widely adopted project management
technique that emphasizes lean processes (no busy-work), autonomous teams
(no dictated decisions from management), and a fast feedback loop on both
process and product (no static plans) [16]. Scrumage has previously been
applied to a Discrete Mathematics course with a resulting improvement in
student attitudes [7], but no work exists on using Scrumage for a higher-level
course like Algorithm Analysis. In the following section, we describe the design
of a Scrumage-based Algorithms course as well as a survey constructed to assess
how student attitudes about learning changed from the start to the end of the
semester.

3 Methodology

We have taught Algorithm Analysis at our institution many times in the past
following a traditional, lecture-based approach; we have used the Scrumage
approach in each of the last three offerings, observing each time similar im-
provements compared to our prior traditional approach. The authors have
individually implemented Scrumage with slight differences in content, assign-
ments, and incentives, but with the same core principles. In the following
sections, we describe the most recent offering.

3.1 Course Structure

In the Scrumage approach, a course is divided into a series of units called
sprints, each with its own set of topics and requirements. Each sprint begins
with team assignment (after the first sprint, students have primary input into
team formation) and the distribution of available resources (videos, readings,
slides, etc.) and requirements (work to be completed by the end of the sprint).
We provide a form for teams to make requests for how class time should be spent
each day of the sprint. For example, a student might request the instructor
to work through example problems similar to one of the requirements on a
given day or play a review game prior to a quiz. Students are required to
come to class each day to meet with their team at the start of class and to
complete a check-in problem - a short (5-minute), lightly graded quiz designed
to help students better understand how well they are progressing. After these
required activities, students have the liberty to stay for the remainder of class
or not, depending on whether the planned activities are helpful to them or
not. On many days there is an optional lecture, followed by in-class work time
when students can make progress on their requirements while the instructor

3



Sprint Topics Requirements
1. Fundamentals I Basics PS1 - basic analysis
(3 weeks) Analysis PA1 - unique elements

Sorting Quiz 1
Divide & conquer
Master method

2. Fundamentals II Recurrence relations PS2 - more analysis
(3 weeks) Quicksort PA2 - k largest

Lower bounds Quiz 2
Linear sorting

3. Data Structures Data structures PS3 - heaps and trees
(3 weeks) Binary search trees Quiz 3

Hash tables
4. Graphs Graphs, DFS, BFS PS4 - graphs and greedy
(3 weeks) Dijkstra’s Algorithm PA3 - fastest route

MST Quiz 4
Huffman trees

5. Adv. Techniques Dynamic programming PS5 - DP & NPC
(2 weeks) NP-Completeness Final exam

Table 1: The course is divided into 5 sprints, each focused on a subset of topics
and with defined requirements to be completed. The requirements are either
team-based problem sets (PS) or individual programming assignments (PA).

circulates providing help as requested. The last day of each sprint culminates
in a quiz.

Table 1 shows a breakout of the topics and assignments for each of the five
sprints. In particular, there are problem sets covering the more theoretical
elements of algorithm design and analysis (15% of the total points), as well
as more practical programming assignments (20% of the total points). The
first four sprints end with a quiz (32% of the total points). Material from
the fifth sprint is included on the (cumulative) final exam (23% of the total
points). A small number of points (5%) is awarded for learning management
activities, such as attending team meetings, making and following through on
plans, and completing a retrospective survey at the end of each sprint. Finally,
the daily feedback check-ins comprise a small number of points (5%) so students
complete them thoughtfully.

4



3.2 Survey Development

To help identify changes in student attitudes over the course of the semester,
we created a survey to be administered at the start and end of the course. The
survey included 30 Likert-scale (1 - 7) questions. Of these, six related to student
learning preference, such as “Small group discussion is an effective approach for
me when I am learning new material.” Also included were 24 questions focusing
on student learning attitudes taken from the “Motivated Strategies for Learning
Questionnaire” [15] from 4 categories: Effort Regulation, Metacognitive Self-
Regulation, Help Seeking, and Control of Learning Beliefs. The surveys also
included several free-text fields, such as “What are your impressions of the
topic of Algorithm Analysis?” In the following section, we describe the survey
results and our observations of student learning and attitudes.

4 Results and Discussion

The most recent course offering included 31 students across two sections. The
majority of students were in their 3rd or 4th year in the program, with a few
students in their 2nd year. We administered the survey the week prior to the
start of the course, which established a baseline for our analysis, as well as
providing input to initial team formation, where students providing similar
survey responses were grouped together.

Of the 4 categories, the largest change in average student score was in
the Control of Learning Beliefs category, which focuses on the extent to which
students feel that they are able to learn the course material and are responsible
for their own learning outcomes. While the sample size is small, this change was
found to be statistically significant (p = 0.05) using the Wilcoxon signed rank
test. This outcome suggests that we met one of our key goals: to help students
take responsibility for their own learning. Figure 1 shows the distribution of
student responses on each category of student attitude questions using kernel
density estimation (KDE) [14] for the pre- and post-surveys.

In particular, the student attitudes questions with the largest absolute
change over the semester were, "It is my own fault if I don’t learn the ma-
terial in this course," which is part of the Control of Learning Beliefs category,
and "Even if I have trouble learning the material in this class, I try to do the
work on my own, without help from anyone," which is part of the Help Seeking
category. We observed an average decrease in the Help Seeking category score,
which we attribute to students being more inclined to make use of the pro-
vided resources rather than asking the instructor for help. While this outcome
could indicate more independence in learning, we did not observe a decrease
in student questions in class or by email, and attendance in office hours re-
mained strong throughout the course. Other responses that showed significant

5



0.0

0.2

0.4

0.6

%
 S

tu
de

nt
s

Control of Learning Beliefs

Start
End

Effort Regulation

Start
End

4 2 0 2 4
Score

0.0

0.2

0.4

0.6

%
 S

tu
de

nt
s

Help Seeking

Start
End

4 2 0 2 4
Score

Metacognitive Self-Regulation 

Start
End

Figure 1: Kernel Density Estimate (KDE) distributions of average scores across
categories from the learning attitudes survey questions show how student re-
sponses changed from the start to the end of the semester.

increases related to learning preferences for working in small groups and for
"jumping straight into problem-solving and looking up relevant information
along the way" as opposed to a more structured introduction to material.

4.1 Text responses

In addition to Likert-scale questions, students responded to several free-text
prompts. The following sections focus on changes in student impression of
the topic, their feelings about ownership of their own learning, and their met-
alearning about their own individual approach to the course.

4.1.1 Student Impressions

One survey question related to student perceptions of the topic of algorithm
analysis. Running the Vader sentiment intensity analyzer shows an improve-
ment in student sentiment from pre- to post-survey. In particular, the com-
pound sentiment score, which varies from -1 for extremely negative to +1 for
extremely positive, increased from 0.1254 to 0.4543, over the semester. For
additional insight, we coded the responses based on keywords related to four
categories: difficult, interesting, useful, and enjoyable. The following example
comments are typical for each category:

• Difficult: "Algorithm analysis was very difficult... but I learned a lot
from the class. "

• Interesting: "Tough but interesting. I like the more academic lens of
computer science that we have in this class."

• Useful: "It seemed to be very important and mostly a way of think-
ing. It helped me think of new ways to solve problems and approach

6



Difficult Interesting Useful Enjoyable
0.0

2.5

5.0

7.5

10.0

Co
un

t

Start
End

Figure 2: Counts of sentiment tags relating to student impressions of the topic
of algorithms on a pre- and post-test.

programming from a different perspective."

• Enjoyable: "I enjoyed it. I liked going beyond writing functional code
and evaluating what made code efficient/fast/generally ’good’."

Figure 2 shows how these counts changed over the course of the semester,
with students indicating increased positive impressions and decreased negative
impressions. (Note that a response could be tagged with multiple categories.)

4.1.2 Student Ownership of Learning

One interesting observation is that, while in-class lectures were explicitly la-
beled as optional, with students invited to leave if they preferred a different
learning approach, in practice, almost all students stayed every day for lecture.
However, they noted in surveys that they appreciated the freedom to choose,
e.g., “every day I made the choice to stay for the lectures” and “. . . the optional
lectures helped because I always stayed to advance my learning.” We hypothe-
size that the psychological impact of “opting in” is a key part of the success of
the Scrumage approach. One survey question related specifically to students’
feelings about responsibility for their own learning. Multiple responses suggest
that the Scrumage approach was effective at promoting student ownership:

• “I think this learning approach was successful for getting me to take
ownership of learning material. It allowed me to be able to study at my
own pace ... Compared to my other classes I would honestly rate this
one the highest in terms of how much I’ve been motivated to understand
the concepts and it’s the class I feel I’ve learned the most in.”

• “This freedom to decide between videos, slides, readings, and lectures,
not only made class more meaningful, but also helped dampen the feeling
that showing up to class was a chore (ex. if you felt comfortable with the
topic, the lecture may not have been necessary to stay for).”

7



• “. . . [The] sprint style was my favorite class organization I have seen...
The division into smaller topics helped make the course load feel more
manageable, and allowed additional emphasis to be put on each topic.
Further by having group and individual work for each sprint, I was able to
improve my teamwork skills, and also ask questions to help work through
problems and facilitate my own discussion and learning.”

4.1.3 Metalearning

One survey question asked students to indicate their strategy for using the
available resources to learn the material. Gratifyingly, many students reported
progress in learning about their own learning:

• “I learned over the semester that my best way to learn was to watch
the videos and look over the slides before a class. This way, I could ask
questions during the lecture, and reinforce what I had taught myself."

• “I generally went over lecture slides first, then if I still had trouble under-
standing material I went to the book, and if I still wasn’t sure I used the
videos. I tried to understand the material first before going into solving
problems so if I got stuck I would know where to refer to for answers.”

• “I primarily learned from jumping into the problems and trying to piece
it together with videos textbook and slide. If all else failed I went straight
to office hours.”

• “. . . My approach changed slightly over time as I realized the pre class
prep is what helped me the most for truly understanding the topics.”

Coding the free text responses indicates that lectures were the most popular
learning approach, closely followed by videos (Figure 3). Of note, most students
mentioned preferring multiple learning modalities.

5 Conclusion and Future Work

Our results suggest that the Scrumage teaching approach can be effectively
applied to an Algorithms course and resulted in students taking more ownership
over their learning, discovering how they personally learn best, and having
better impressions of the course and the topic of Algorithm Analysis.

While we saw a marked increase in attitudes, grade outcomes from the
course were similar to semesters that followed a traditional pedagogical ap-
proach. However, because a number of factors change from one course offering
to another, no clear conclusions can be drawn from this outcome. We look

8



0 5 10 15 20
Count

Lecture
Videos

Problems
Textbook

Slides
Office Hours

Practice Tests

Figure 3: Counts of which learning approaches were mentioned in student
responses to a survey question about how students chose to learn material.

forward to further studying the effect on content learning as well as the effect
on instructor experience in the future.

Finally, we note that, from the instructor perspective, Scrumage resulted
in a more enjoyable teaching experience. Students appeared more motivated
and better prepared for class, often asking better questions that suggested they
had already attempted to solve homework problems on the topic of discussion.
Our experience has been that less time is needed for spoon-feeding students
the basics, and more time is spent on applications of techniques and drawing
connections between different ideas.

References

[1] Azita Iliya Abdul Jabbar and Patrick Felicia. Gameplay engagement and
learning in game-based learning: A systematic review. Review of educa-
tional research, 85(4):740–779, 2015.

[2] Jacob Lowell Bishop, Matthew A Verleger, et al. The flipped classroom: A
survey of the research. In ASEE national conference proceedings, Atlanta,
GA, volume 30, pages 1–18, 2013.

[3] Florent Bouchez-Tichadou. Problem solving to teach advanced algorithms
in heterogeneous groups. In Proceedings of the 23rd Annual ACM Confer-
ence on Innovation and Technology in Computer Science Education, page
200–205. ACM, 2018.

[4] Mary Burgan. In defense of lecturing. Change: The Magazine of Higher
Learning, 38(6):30–34, 2006.

[5] Donald Chinn. Peer assessment in the algorithms course. SIGCSE Bull.,
37(3):69–73, June 2005.

9



[6] Shannon Duvall, Dugald Ralph Hutchings, and Robert C Duvall. Scru-
mage: A method for incorporating multiple, simultaneous pedagogical
styles in the classroom. In Proceedings of the 49th ACM Technical Sym-
posium on Computer Science Education, pages 928–933, 2018.

[7] Shannon Duvall, Duke Hutchings, and Michele Kleckner. Changing per-
ceptions of discrete mathematics through scrum-based course management
practices. Journal of Computing Sciences in Colleges, 33(2):182–189, 2017.

[8] Tommy Färnqvist and Fredrik Heintz. Competition and feedback through
automated assessment in a data structures and algorithms course. In Pro-
ceedings of the ACM Conference on Innovation and Technology in Com-
puter Science Education, page 130–135. ACM, 2016.

[9] Tommy Färnqvist, Fredrik Heintz, Patrick Lambrix, Linda Mannila, and
Chunyan Wang. Supporting active learning by introducing an interactive
teaching tool in a data structures and algorithms course. In Proceedings
of the 47th ACM Technical Symposium on Computing Science Education,
page 663–668. ACM, 2016.

[10] Lasse Hakulinen. Card games for teaching data structures and algorithms.
In Proceedings of the 11th Koli Calling International Conference on Com-
puting Education Research, page 120–121. ACM, 2011.

[11] Alison King. From sage on the stage to guide on the side. College teaching,
41(1):30–35, 1993.

[12] Anany Levitin and Mary-Angela Papalaskari. Using puzzles in teaching
algorithms. SIGCSE Bull., 34(1):292–296, February 2002.

[13] ACM Joint Task Force on Computing Curricula. Computer science cur-
ricula 2013: Curriculum guidelines for undergraduate degree programs in
computer science, 2013.

[14] Emanuel Parzen. On estimation of a probability density function and
mode. The annals of mathematical statistics, 33(3):1065–1076, 1962.

[15] P. R. Pintrich, D. Smith, T. Garcia, and W. McKeachie. A manual for the
use of the motivated strategies for learning questionnaire (mslq). 1991.

[16] Jeff Sutherland and JJ Sutherland. Scrum: the art of doing twice the work
in half the time. Currency, 2014.

10


