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Abstract

In this paper, we propose a method for estimating 3D hu-
man pose from a single RGB image. Compared to methods
that either provide point estimates for coordinate regression
or unimodal predictions of joint locations, our approach
predicts joint locations using multimodal distributions. In
addition, we apply a data-driven approach to learn the con-
ditional dependencies of the relative positions of joints. Our
end-to-end approach takes as input images with either 2D
or 3D labels and performs on par or better than the state-
of-the-art on the Human3.6M and MPII datasets.

1. Introduction and Related Work

3D human pose estimation from a single image is a chal-
lenging inference problem with a long history in the fields
of computer vision, and more recently, machine learning.
A recent survey provides a general overview [17]. The
challenges are due to the wide variation in possible hu-
man pose, and additional variability due to viewpoint, back-
ground, and occlusion, particularly the self occlusion of hu-
man body parts in particular poses from certain viewpoints.

In this paper, we propose an end-to-end method that fo-
cuses on three significant challenges for this task: (1) the
ambiguity of 3D inference from a 2D image, (2) the rela-
tionship between the positions of different joints, and (3)
the limited amount 3D labels for real-world images.

1.1. 3D Inference Ambiguity

Estimating 3D parameters from a 2D image leads to an
inherent complication where many different 3D poses can
be consistent with a given image. The majority of ap-
proaches sidestep this ambiguity and structure the problem
as regressing the 3D locations of the joints by minimizing
a least squares loss function and reporting a single (best)
prediction [12, 5, 18]. Other approaches, rather than di-
rectly predicting 3D coordinates, predict related structures.
One method learns to regress a 2D distance matrix encoding
relationships between joints to a 3D distance matrix [14].
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Figure 1. Our method predicts a distribution over the 3D location
of each joint. On the right, 3D samples from each joint’s predicted
distribution are shown in magenta, with a skeleton drawn through
the most likely estimates (and overlaid on the image). Joint po-
sitions that can be confidently estimated (head, shoulders) have a
smaller variance, while joints that are occluded (right wrist and
knee) have a larger variance, indicating more uncertainty.

Pavlakos et al. proposes a volumetric representation to pre-
dict 3D heatmaps rather than coordinates [16]. Yang et al.
adapts adversarial learning to distinguish between ground
truth 3D annotations and 3D annotations created by a gen-
erator [21]. All of these approaches use least squares mini-
mization and report the conditional average of the predicted
3D joint positions.

There have been some alternatives to least squares min-
imization. One recent method lifts 2D poses to 3D by fit-
ting a probabilistic 3D pose model [19]. Another method
uses nearest-neighbor to find a suitable 3D pose based on
matching similar 2D poses [3]. A similar approach matches
a 2D pose estimate with a projected 3D pose by searching
over possible projections from a set of virtual cameras [22].
These nonparametric approaches avoid the limitation inher-
ent in least squares minimization, but require computation-
ally expensive iterative fitting. Further, accuracy is limited
by the number of exemplars, which imposes a trade-off be-
tween error and latency. Our approach is explicitly multi-
modal, estimating the conditional density over the space of
possible 3D poses, given an input image, rather than a single
average pose.

Concurrent to our work, a recent approach also provides
multimodal predictions for human pose estimation [I1].



This method differs from our work in several ways, includ-
ing utilizing a two-stage training protocol rather than end-
to-end training and estimating isotropic covariances.

We propose a model that predicts a multimodal prob-
ability distribution over the possible output values by in-
corporating Mixture Density Networks (MDNSs) [2]. This
approach allows for more accurate modeling of the ambi-
guity in human pose compared with traditional averaging
methods. Predicted distributions can also be naturally ag-
gregated over a sequence of frames for video prediction or
a set of cameras for multi-view prediction.

1.2. Modeling Joint Dependencies

There have been a variety of approaches to model the in-
teraction among human joints in the structure of the learned
model. Most existing work treats the prediction of each
joint separately (e.g., [12, 16]), while other approaches fo-
cus on the kinematic chain, defining parent-child relation-
ships between, for example, knee and ankle, or elbow and
wrist (e.g., [7, 9]). One recent approach proposed a pose
grammar consisting of human joint dependencies based on
kinematics as well as symmetry and motor coordination [5].
A potential drawback of these manually-defined parent-
child relationships is that they may not fully capture the
complex interaction among human joints.

We propose instead to use a data-driven approach to
learn the joint relationships from the data. This idea is sim-
ilar to a related method that incorporated mutual informa-
tion to create a Bayesian network to model prior probabil-
ities for 2D pose configurations [10]. Our approach learns
which joints best predict the location of other (potentially
occluded) joints through iterative refinement.

1.3. Overcoming Limited 3D Labels

There is a trade-off between 3D labels and image diver-
sity; datasets with 3D annotations are typically collected
in lab environments. By contrast, images labeled with
2D poses are abundant, and include real-world (or “’in the
wild”’) scenes. A common workaround is to follow a two-
stage pipeline, where an image is first passed through a 2D
estimation process, such as Convolutional Pose Machines
(CPM) [20] or Stacked Hourglass [15], and then, as a sepa-
rate process, the 2D estimate is lifted to 3D. Several meth-
ods take this lifting approach, which has the advantage that
the relatively large amount of available 2D-annotated data
can be used to train the first stage, while the more limited
amount of 3D-annotated data is needed only to train the sec-
ond stage [12, 5, 14]. However, potentially valuable image
features are discarded due to the decoupling of the stages.
In addition, error in the 2D phase is propagated to the
3D phase. Other methods propose an end-to-end training
model, but require strictly 3D annotations, limiting their ap-
plication to data collected in a lab environment [ 16, 18]. Re-

cently, some methods combine both 2D- and 3D-annotated
data in a single phase. One method uses transfer learning,
allowing features learned with 2D-annotated examples to
be re-used for predicting 3D [13]. Zhou et al. introduces
a geometric constraint to allow loss computation for mixed
batches of 2D and 3D examples [23].

Our approach follows recent work and employs an end-
to-end training process that uses both 2D- and 3D-annotated
data as input to learn a single integrated model. This inte-
gration helps by allowing the model to incorporate features
from earlier stages in the final prediction. In addition, train-
ing with mixed 2D- and 3D-annotated data helps the learned
model better generalize to real-world environments.

1.4. Contributions

In this paper, we propose an end-to-end method that fo-
cuses on three significant challenges for 3D human pose
estimation from a single image. Our approach performs
well compared to the state-of-the-art, both qualitatively and
quantitatively. The main contributions include:

e an approach to model the inherently ambiguous one-
to-many nature of 3D human pose estimation as a mul-
timodal conditional distribution over possible poses;

e a technique for iteratively refining joint location es-
timates using mutual information to identify which
joints most influence each other; and

e an end-to-end training approach that simultaneously
integrates both 2D- and 3D-annotated examples.

2. Method

Given an image, I, the goal is to predict the 3D position
of a set of human keypoints (joints). Following the most
common formulation of the problem, the camera frame
serves as the coordinate system, with the first two dimen-
sions corresponding to image coordinates, and the third in-
dicating depth in millimeters [23, 12, 16]. Poses are zero-
centered about a root joint (pelvis). The objective is to min-
imize the mean prediction error:

1<
=2 Iy =3l (1)
j=1

where §7 is the predicted position of the j* joint, yJ is the
ground truth position, and J is the number of joints in the
model. In our approach, we learn the parameters of a multi-
modal distribution for each 3D joint location that minimizes
the negative log likelihood of the target 3D joint location
under the estimated probability density.

2.1. Model Architecture

Figure 2 shows the proposed architecture for our model.
An input image, I, is first processed by a 2D pose estima-
tion module, based on the stacked hourglass network [15],
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Figure 2. The proposed network is trained with mixed batches of both 2D- and 3D-annotated examples. The first stage of the network
performs 2D inference and follows the stacked hourglass architecture of [15]. The second stage combines the output from the 2D stage
to generate 3D predictions for each joint. The 3D stage incorporates a data-driven joint selection module to iteratively incorporate the
prediction locations of related joints. The output is modeled by a mixture density network (MDN), which predicts the parameters (u, o,

and «) for a distribution over the position for a given joint.

which produces 2D heatmaps for each joint. Next, a 3D
module predicts a distribution over the position of each
joint. This module iteratively refines the prediction for each
joint based on the related joints (encoded by the selector)
as well as the features from the 2D pose estimation module.
During training, input examples are provided with either 2D
or 3D labels. In Section 2.4, we describe how each case is
handled.

2.2. Selecting Related Joints

The relative positions of body joints are not, in general,
conditionally independent. In addition to the structural con-
straints imposed by the human body, the relative positions
of particular joints can be both over- and under-represented
in images from real-world scenes. We seek to learn, in
a data-driven fashion, the mutual dependence of pairs of
joints. In our model, we take a recurrent refinement ap-
proach where the predicted position of selected joints is fed
back as input to the prediction module.

Mutual information is a measure of the dependence be-
tween two random variables and can help predict the util-
ity of one joint position in determining another. To cal-
culate the mutual information between each pair of human
joints, we adopt a recent non-parametric method for esti-
mating mutual information between dependent, continuous
variables [6]. Using this method, we can identify the most
informative related joints for each joint from the training
data.

Figure 3 shows a graph representing the three high-
est mutual information relationships between joints based
on the Human3.6M dataset [8]. Many of the relation-
ships follow the kinematic chain (e.g., shoulder to elbow
to wrist). Interestingly, some symmetry relationships are
captured (e.g., between left and right knees), while others
are not (e.g., between left and right elbows). And some
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Figure 3. Data-driven joint dependencies. For the H3.6M dataset
and 16-joint skeleton, the outgoing edges on the graphs show the
first, second, and third most related joints, respectively, based on
mutual information.

less expected relationships are evident, as between elbows
and hips. These mutual information relationships are repre-
sented in our network model by concatenating, as the input
to a given refinement stage, the outputs from the prior stage
of the joints with the highest mutual information with the
given joint. This allows for the multi-stage refinement of
the predicted position of each joint.

2.3. Multimodal Joint Predictions

The output of the network is a multimodal distribu-
tion for each joint location. Mixture density networks
(MDN) [2] have been used to predict such distributions with
neural architectures. Here, we model the conditional den-
sity over the 3D joint position, y, for each joint using a mix-
ture of K Gaussian distributions. This density is modeled
as

K
p(y|x, 6) = Zak(xv@)¢k(Y|xv®) ()
k=1

where x represents the input image, ® are the learned pa-
rameters of the network, « represents the weights of the
components, and ¢ is the conditional density. We use the
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where L, is the mixture component mean, oy, is the mixture
component standard deviation, and c represents the dimen-
sionality.

For an MDN, the outputs of the last layer are constrained
so that the output can be interpreted as the parameters of
a multimodal distribution. Let z represent the vector of
outputs from the last layer of a neural network. The out-
puts corresponding to the standard deviations, 2}, are con-
strained to be positive by applying the exponential function,

o = exp(zy) )

Similarly, the outputs corresponding to the mixture weights,
z;¥, are constrained to sum to one using the softmax func-
tion,
«
an — ;(:Xp(zk ) 5)
> im1€xp(2fY)

We employ such a multimodal model for each joint. This
mixture density formulation allows us to explicitly model
the positional ambiguity in the 3D joint estimates. The out-
put prediction is an approximation of the mode of the multi-
modal distribution; we select the mean, p, of the component
with the largest mixture weight, c. In Section 3, we show
how this approach outperforms methods that rely on single
point and unimodal distribution predictions.

2.4. 2D + 3D Hybrid Loss

The proposed network supports integrated training with
batches of both 2D- and 3D-annotated examples, as shown
in Figure 2. This capability is important to allow the model
to learn to predict 3D positions, but at the same time to take
advantage of the greater variation present in in-the-wild, 2D
datasets.

In the 3D case, the loss for a given image with J joints
is the sum of the negative log-likelihood of the probability
estimates. Incorporating Equation 2 gives:

J
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In the 2D case, we integrate the 3D prediction over the
depth dimension and compute the loss using the 2D vari-
ant of Equation 3 with the 2D ground truth annotations. As
both versions derive from proper posterior distributions, we
do not perform any additional weighting or normalization
to account for 2D versus 3D annotated examples.

3. Results

We implemented our model using PyTorch and trained
using an Nvidia Titan Xp GPU.

3.1. Experiment Design

We follow the training protocol outlined in recent related
work (e.g., [16, 23, 12]), where a hybrid (2D + 3D labels)
dataset is created by combining the training sets of the Hu-
man3.6M [8] and MPII Human Pose [ 1] datasets.

3.1.1 Training Data

Human3.6M contains 3.6 million images captured in a con-
trolled indoor environment. There are 7 actors performing
15 common actions, such as sitting, walking, and taking a
photograph. Ground-truth 3D positions are provided for 16
joints, as well as camera calibration parameters. Follow-
ing the most common protocol, we retain every 5th frame
for our experiments, and group 5 of the actors (S1, S5,
S6, S7, and S8) into the training set, with actors S9 and
S11 reserved for testing. MPII Human Pose contains ap-
proximately 25 thousand in-the-wild images collected from
YouTube videos of several hundred human activities and an-
notated with the 2D locations of 16 joints. The dataset is
split into training and testing subsets.

3.1.2 Training Details

Training proceeds in two phases. Initially, the 2D pose es-
timation module, based on the stacked hourglass architec-
ture, is trained from scratch using the 2D-annotated dataset,
MPII, as described in Newell et al. [15]. Then the combined
network is trained together using mixed batches of 2D- and
3D-annotated examples from both MPII and H3.6M. Train-
ing proceeds for 25 epochs using ADAM with a learning
rate of le-4 and a batch size of 6. For 30 additional epochs,
the learning rate is gradually reduced to le-6. Training im-
ages are extracted from full frames by cropping a square
image based on annotations provided with the dataset, as is
common in other work [8, 23].

3.1.3 Evaluation Metric

The most common evaluation metric for this task is the
mean per joint position error (MPJPE) in millimeters be-
tween ground-truth and predicted 3D position. Poses are
first aligned based on a root joint (e.g., center pelvis) and by
scaling the predicted pose so that the total length of edges
between joints matches the average total length of actors in
the training set [23]. This alignment removes the necessity
of using camera calibration parameters during testing. For
our approach, we compute the MPJPE to the mean of the



Method MPJPE Method MPIPE
K=1 687 Jr=0 620
K=3 610 Jr=1 613
K=5 599 Jr=2 611
K=7 606 Jr=3 599

Table 1. Component evaluation using MPJPE (lower is better) on
the Human3.6M dataset. (Left) Comparison of the number of mix-
ture components, K. (Right) Comparison of the number of condi-
tionally related joints, Jr.

component with the highest mixture weight in the multi-
modal distribution.

3.2. Component Evaluation

We first evaluate the effect of the key contributions intro-
duced in our model: (1) multimodal posterior predictions,
(2) iterative refinement, and (3) data-driven mutual joint se-
lection. These results were evaluated on the Human3.6M
testing set, which includes 3D annotations.

Table 1 (left) shows the effect of varying the number of
mixture components, K, on the 3D pose estimation accu-
racy on the Human3.6M dataset. In general, MPJPE de-
creases as K increases, saturating at K = 5. For the re-
maining experiments, we choose K = 5 mixture compo-
nents.

We also evaluated the contributions of two intertwined
contributions, iterative refinement and the number of related
joints. For each variation, we train and test a model follow-
ing the above protocol with ' = 5 mixture components.
In general, incorporating the iterative refinement stages im-
proves prediction accuracy (e.g., for Jgp = 3, the MPJPE
increases from 59.9 mm with iterative refinement to 62.0
mm without). Table 1 (right) shows the results using an in-
creasing number of related joints, Jr for each prediction.
The performance tends to increase as additional joints are
added at the cost of additional weights and memory usage
for the network. In the following experiments, our model
employs K = 5 mixture components, iterative refinement,
and Jr = 3 conditional dependencies.

3.3. Comparison to Recent Methods

Table 2 details our results for 3D pose estimation on the
Human3.6M dataset, as well as results reported by several
related methods. We report results for both our full model
(K = 5) and a baseline (K = 1), which is equivalent to
providing a unimodal prediction for each joint. The aver-
age error for the baseline (K = 1) model, 68.7, is similar
to several other recent methods. With the exception of a
few outlier poses, our full model (K = 5) consistently per-
forms at or near the top of the list compared to recent related
approaches. The overall best performer [ 1 1] was developed
concurrently to our method and also primarily relies on mul-
timodal predictions using MDNSs.

Figure 4 shows visual results from our model. Each in-
put image is overlaid with the projected skeleton based on
the most likely estimates from the model. The skeleton is
shown in 3D from a different view angle to the right of each
input image. Our model is able to accurately predict 3D
joint locations for a wide variety of human poses, even in
the presence of occlusion. We also evaluate our method’s
ability to generalize against the MPII validation set, which
includes challenging in-the-wild images not previously seen
by our model during training. Because this dataset includes
only 2D annotations, we show qualitative results only (bot-
tom three rows of Figure 4).

Figure 5 shows examples of predicted distributions over
3D joint positions for input images from the Human3.6M
dataset. In the first example, samples drawn from each
joint’s predicted distribution (shown as magenta circles) are
generally tightly clustered around the actual positions, al-
though greater spread can be observed for the elbows and,
particularly, the wrists, suggesting greater uncertainty for
these predictions. The following examples are increasingly
difficult due to greater self-occlusion, with several joints un-
observed in the bottom input images. The samples drawn
from the predicted distributions reflect greater uncertainty,
with much more variation around the actual joint positions,
particularly the occluded joints.

3.4. Cross-dataset Evaluation

We demonstrate the ability of our method to generalize
beyond the datasets used for training by evaluating on im-
ages from an unseen dataset. For this experiment, we train
a model as described above using the MPII training and
H3.6M datasets. For testing, we use MPI-INF-3DHP [13],
a 3D-annotated dataset collected using markerless motion
capture, which contains a variety of actors, actions, and
backgrounds. The test set consists of 2929 images from
7 different actions performed by 6 actors from three differ-
ent scenarios: (1) studio with a greenscreen background, (2)
studio without greenscreen, and (3) outdoors.

Following prior work [13, 23] using this data, the root
joint (pelvis) is first aligned, and it is assumed that the pose
scale is known. The evaluation metrics include the 3D Per-
centage of Correct Keypoints (3DPCK) with a threshold of
150 mm, as well as the area under the curve (AUC) for a
range of PCK thresholds. For both, higher is better.

Table 3 compares our method to a recent approach [13]
on this dataset. Our approach outperforms [13] on aver-
age and across all scenarios except for the examples from
the greenscreen. We note our method greatly outperforms
[13] on the outdoor sequences, which are the least similar to
the images with 3D annotations we used for training, which
were collected in an indoor studio environment. This fur-
ther highlights the ability of model to incorporate the abun-
dant 2D labels to generalize to new 3D predictions.



Method Direct.  Discuss Eating Greet  Phone Photo Pose  Purch.
Ionescu et al. PAMI-16 [&] 132.7 183.6 1323 1644 162.1 2059 150.6 1713
Du et al. ECCV-16 [4] 85.1 1127 1049 122.1 139.1 1359 1059 166.2
Tekin et al. ICCV-16 [18] 102.4 147.2 88.8 1253 118.0 182.7 1124 129.2
Chen & Ramanan CVPR-17 [3] 89.9 97.6 89.9 1079 1073 139.2 93.6  136.0
Pavlakos et al. CVPR-17 [16] 67.4 71.9 66.7  69.1 72.0 77.0 65.0 68.3
Mehta et al. 3DV-17 [13] 52.6 64.1 552 622 716 795 52.8 68.6
Zhou et al. ICCV-17 [23] 54.8 60.7 582 714 62.0 655 53.8 55.6
Martinez et al. ICCV-17 [12] 51.8 56.2 58.1  59.0 69.5 784 55.2 58.1
Fang et al. AAAI-18 [5] 50.1 543 57.0 57.1 66.6 733 534 55.7
Yang et al. CVPR-18 [21] 51.5 589 504 570 62.1 65.4 49.8 52.7
Li and Lee CVPR-19 [11] 43.8 48.6 49.1 498 57.6 615 45.9 48.3
Ours (K = 1) 54.8 63.9 59.5 678 684 555 60.0 83.9
Ours (K = 5) 48.1 57.0 50.8 614 583  48.6 533 71.2
Method Sitting ~ SittingD. Smoke  Wait WalkD. Walk WalkT. Avg.
Ionescu et al. PAMI-16 [§] 151.6 243.0 162.1 170.7 177.1 96.6 1279  162.1
Du et al. ECCV-16 [4] 117.5 226.9 1200 117.7 1374 99.3 106.5 126.5
Tekin et al. ICCV-16 [18] 138.9 2249 1184 13838 1263  55.1 65.8 1250
Chen & Ramanan CVPR-17 [3] 133.1 240.1 106.6  106.2 87.0 114.0 90.5 114.1
Pavlakos et al. CVPR-17 [16] 83.7 96.5 71.7 658 749  59.1 63.2 71.9
Mehta et al. 3DV-17 [13] 91.8 118.4 65.7 635 494 764 535 68.6
Zhou et al. ICCV-17 [23] 75.2 111.6 64.1  66.0 514 632 55.3 64.9
Martinez et al. ICCV-17 [12] 74.0 94.6 623  59.1 65.1 49.5 524 62.9
Fang et al. AAAI-18 [5] 72.8 88.6 60.3 577 62.7 475 50.6 60.4
Yang et al. CVPR-18 [21] 69.2 85.2 574 584 43.6  60.1 47.7 58.6
Li and Lee CVPR-19 [1 1] 62.0 73.4 548  50.6 56.0 434 45.5 52.7
Ours (K = 1) 128.5 67.4 79.0 64.1 499  69.1 56.6 68.7
Ours (K = 5) 108.2 58.6 68.9 577 442 593 479 59.9

Table 2. Comparison to several recent approaches using Mean Per Joint Position Error (MPJPE) in millimeters on the Human3.6M dataset.

Some results are reported from [21].

Scenario SDPCK AUC
[13] | Ours | [13] | Ours
Greenscreen | 70.8 | 68.6 - 38.6
Studio 62.3 | 66.9 - 36.7
Outdoor 58.5 | 71.5 - 432
All 64.7 | 68.6 | 31.7 | 39.0

Table 3. Results for cross-dataset evaluation on unseen data com-
pared to [13] on the MPI-INF-3DHP dataset using 3DPCK and
AUC (where reported). For both metrics, higher is better.

4. Conclusions

We presented an end-to-end method for 3D human pose
estimation from a single image that (1) explicitly models
the ambiguity inherent in 3D inference from a 2D image
using multimodal distributions, (2) learns the conditional
dependencies between the positions of different joints, and
(3) incorporates both 2D and 3D labels to account for the
limited amount 3D labels for real-world images. The ex-
perimental results demonstrate that our method outperforms
approaches which rely on a single or “average” prediction.
Future directions include hyperparameter (e.g., number of

mixture components, joint selection) learning as part of the
end-to-end training process and combining multiple multi-
modal predictions for multiview or video settings.
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