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ABSTRACT
We present a method for head pose estimation for moving
targets in multi-camera environments. Our approach utilizes
an ensemble of exemplar classifiers for joint head detection
and pose estimation and provides finer-grained predictions
than previous approaches. We incorporate dynamic cam-
era selection, which allows a variable number of cameras to
be selected at each time step and provides a tunable trade-
off between accuracy and speed. On a benchmark dataset
for multi-camera head pose estimation, our method predicts
head pan angle with a mean absolute error of ∼ 8◦ for dif-
ferent moving targets.

CCS Concepts
•Computing methodologies→Computer vision tasks;
Tracking; Ensemble methods;

Keywords
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1. INTRODUCTION
Head pose provides cues to a subject’s attention and fo-

cus, which can be important for applications in surveillance,
marketing, and HCI. Multi-camera networks are well-suited
to support these applications; however, in the most com-
mon deployments, cameras observe a wide field-of-view, and
a person only occupies a small area of image, with heads
sometimes as small as 20 pixels. In addition, the motion of
people in the scene introduces challenges due to changes in
scale and perspective.

In this paper, we propose a method for head pose estima-
tion in multi-camera networks that is based on an ensemble
of exemplars, which can be used to build a strong predictor
using relatively simple features. We introduce a dynamic
camera selection scheme, which allows the system to use the
prediction from fewer cameras in “easy” cases (e.g., large
faces, visible facial features) and more cameras in cases of
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Figure 1: Our method uses an ensemble of exem-
plars to provide fine-grained head pose estimates in
multi-camera networks.

ambiguity. Our main contributions are (1) adapting exem-
plar classification to the problem of head pose estimation,
(2) providing fine-grained predictions of head pose angles,
and (3) dynamic camera selection to balance accuracy and
computational efficiency.

2. RELATED WORK
Head pose estimation is often used as a proxy for gaze es-

timation [10]. In the cases where facial features are readily
identifiable from images, gaze direction can be estimated di-
rectly via eye detection and pupil tracking [6]. At medium-
scale resolutions, some approaches rely on locating salient
features such as the eyes, ears, and nose [18]. Several re-
cent efforts have sought to estimate head pose relative to
a single camera from low-resolution images. One approach
introduced a descriptor based on Kullback-Leibler distance
applied to facial appearance [11]. Tosato et al. describe a
new feature descriptor (ARCO) targeted at vision tasks in
low-resolution images [14].

For the multi-camera setting, approaches tend to fall into
one of several categories. Some work has investigated syn-
thesizing 3D head shapes, e.g., ellipsoids [1] or spheres [15].
These methods tend to be computationally expensive and
require many cameras. Other methods concatenate images
from network cameras to learn a single discriminative func-
tion [7]. The most common approach applies existing monoc-
ular head pose techniques separately to individual views,
computing relative pose (or a probability distribution of rel-
ative pose) for each camera and combining to compute the
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Figure 2: For joint localization and pose estimation,
multiple patches are evaluated at each camera. The
highest-scoring detection is shown in green.

absolute pose estimate (e.g., [9]). Unlike these methods, our
is applicable to the case of moving targets.

Some work has addressed head pose estimation of mov-
ing people in multi-camera settings. Yan et al. proposed
a scheme to learn head appearance as a function of posi-
tion within an environment [16, 17]. Other methods have
incorporated transfer learning to leverage information from
datasets with stationary people [12]. These approaches pro-
vide coarse predictions of head pose as one of a small number
of pre-defined directions. Our method is designed for con-
tinuous pose estimation for moving people in low-resolution
images. Further, it has low computational cost, using nei-
ther complex features nor expensive model fitting.

3. METHOD
The focus of this paper is to estimate the head pan (az-

imuth) and tilt (elevation) angles with respect to a global co-
ordinate system in calibrated, multi-camera networks. This
is normally one step in a pipeline that includes detection and
tracking, so we assume that the target has been localized
(e.g., bounding box in each camera). This leaves the prob-
lems of head localization and pose estimation. Previous ap-
proaches consider these two issues separately and often em-
ploy computationally expensive methods for head localiza-
tion [12]. In this section, we describe our computationally-
efficient, joint approach to head localization and pose es-
timation from a single camera, and also the aggregation
scheme for multi-camera networks.

3.1 Single-Camera Head Pose Estimation
Previous work has shown that most features used for head

pose estimation are sensitive to localization, especially in the
case where the targets move freely [17]. Given a tracked tar-
get in a multi-camera network, a rough localization of the
head can be obtained using simple rules (e.g., top third of
of the target’s bounding box). We use a sliding window
approach, as shown in Figure 2, for evaluating multiple lo-
cations and a prediction scheme that provides a confidence
level associated with the prediction.

3.1.1 Exemplar SVM
For joint localization and estimation, we use an ensem-

ble of exemplar SVMs (ESVM), which has been previously
applied to object detection [8] and place recognition [4]. Fig-
ure 3 provides a visual overview of ESVM, where local detec-
tors are trained using a single (positive) exemplar. Figure 4
shows positive and negative image patches for the problem

Figure 3: (Left) Most learning methods fit a global
model to the training data. (Right) Exemplar SVMs
learn local models centered on individual exemplars.
The ensemble of the local learners represents a com-
plex prediction model.

Figure 4: Exemplar SVM models are trained using
a single positive training example (left) and many
negative examples (right).

of head pose estimation, where negative examples are gath-
ered from images of the scene with no people present. Each
local model can be considered as a binary classifier for the
metadata (e.g., head pose angle) associated with the train-
ing exemplar.

Calibrating the predictions of the local models provides
for output values, which can be directly compared as confi-
dence values of a query matching the local models. Calibra-
tion requires a separate training stage, using only labeled
image patches containing heads. For each exemplar, posi-
tive examples are those patches for which the labels “match”
and the remaining are negative. For example, in the case of
head pan angle estimation, positive examples would corre-
spond to image patches with pan angles within a specified
threshold of the exemplar. As shown in Figure 5, calibration
has the effect of dampening the output of less reliable de-
tectors, while amplifying those that generalize better. Platt
scaling is used to convert the raw SVM output of the post-
calibration model to a probability value, which can be used
as a detector confidence value. Figure 6 shows the top 5 ex-
emplar detections for a query before and after calibration.

3.1.2 Single-Camera Algorithm
Let D represent the set of M trained exemplar detectors,

as described above. Each detector, Di, is associated with
the label, yi, of the corresponding exemplar, and a scoring
function si(·) that returns the Platt-scaled probability for
a query example, xq. A query example, xq, corresponds to
the feature representation for an image patch extracted from
a roughly localized image window.
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(a) Pre-calibration (b) Post-calibration

Figure 5: For an ensemble of exemplars, calibration
dampens the output of less reliable detectors, while
amplifying those that generalize better.
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Figure 6: For a query example (left), the top-scoring
exemplars are shown before (top) and after (bot-
tom) calibration.

For each query in the search area, we obtain the top K
scoring detectors. The query with the best matches to head
pose exemplars is retained as the head location prediction.
To predict the head orientation at this location, we consider
each of the top matching detectors as a noisy predictor of
the query label, yq, and model the ensemble prediction using
a Mixture of Gaussians model. The contribution of each
detector, Di, is represented by a Gaussian with mean, µ = yi
and standard deviation, σ = 1

αsi(xq)
, where α is a scaling

parameter. Figure 7 shows an example of predicting the
head pan angle of a query image using this approach.

3.2 Multi-Camera Head Pose Estimation
In a multi-camera network, predictions from multiple cam-

eras can be aggregated by multiplying the resulting proba-
bility density functions from each camera. For clarity, all
references to direction-based predictions are assumed to be
from a global coordinate frame. Figure 8 shows an example
of multi-camera prediction of head pan angle. This exam-
ple is representative of the typical case where cameras that
observe the front of the target’s face provide more confident
predictions. For the multi-camera system, the final predic-
tion can be taken as the mode of the combined PDF.

The observation that certain viewpoints in a multi-camera
setting are preferable motivates our approach for dynamic
camera selection. Rather than aggregating the predictions
from all the cameras in the network at once, we sequen-
tially incorporate single-camera predictions until sufficient
confidence is achieved. To estimate the number of cameras
to sequentially sample to make a prediction, we incorpo-
rate the multi-class sequential probability ratio test [3]. We
discretize the probability density function p(y|x) of the per-
camera prediction. For a discretized label, y, the ratio is
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Figure 7: A query image and the top scoring exem-
plars (top). The radial plot (bottom-left) shows the
predicted pan angle and detector score for the corre-
sponding exemplars. The pose angle predictions are
combined into an ensemble estimate (bottom-right).

defined as:

r(y|x1:v) =
P (y|x1:v)∑

y′ 6=y P (y′|x1:v)
(1)

where x1:v denotes the input from a sequence of v cameras.
The class conditional probabilities, P (y|x1:v), are estimated
using the Naive Bayes and uniform priors assumptions:

P (y|x1:v) = P (y|x1:v−1)P (y|xv) (2)

A prediction is made for a class when the ratio is greater
than a user-specified threshold, τ . A ratio greater than 1
indicates that the probability for a particular class is greater
than the sum of the other choices.

3.3 Method Summary
Our method generalizes an efficient single-camera algo-

rithm for head pose estimation to the multi-camera setting.
It is applicable to a wide variety of multi-camera configu-
rations, and, with dynamic camera selection, the computa-
tional efficiency does not necessarily grow with the number
of cameras in the network. In the next section, we evaluate
our approach on a benchmark dataset.

4. RESULTS
We evaluate our method on DPOSE [7], a publicly-available

dataset for multi-camera head pose estimation, consisting
of over 50,000 frames of 16 moving people captured by 4
calibrated, synchronized cameras. Figure 9 shows example
frames from DPOSE, with a zoomed-in crop of the localized
head region.
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Figure 8: For the query image from each view (top row), the top-scoring exemplar estimates are used to
compute probabilistic predictions (bottom row), which are combined to give the system prediction (right).

Figure 9: DPOSE consists of labeled images from
multiple people observed by four cameras.

4.1 Exemplar Head Pose Learning
Targets are tracked using a multi-camera tracking algo-

rithm that estimates a 3D bounding cube for each target [13].
The initial head search area and window size is based on the
projected size of the target in a camera. From each rough
localization image patch, square image patches are extracted
and scaled to 70 x 70 pixels and represented using HOG fea-
tures [2] with 7x7 cells and the 31-dimensional descriptor of
Felzenszwalb et al. [5]. For ESVM learning, training and val-
idation examples are randomly selected from DPOSE. For
each training example, an exemplar model is trained. Nega-
tive examples are extracted from background images of the
scene known not to contain people. Each exemplar model is
calibrated using the validation examples. For head pose an-
gle estimation, examples where the angle difference between
exemplar and validation example is less than 10 degrees are
taken as positives, and those greater than 90 degrees are
negatives. Figure 10 shows the top matching exemplars for
sample query examples from DPOSE.

4.2 Head Pose Estimation
Our approach provides real-valued predictions for both

pan and tilt angles. To the best of our knowledge, no previ-
ous work has reported real-valued predictions on the DPOSE
dataset for the problem of head pose estimation in multi-

Figure 10: For the image patch from each camera
(column 1), the top scoring exemplars are shown.
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Figure 11: Mean absolute error for head pan and
tilt angle estimation.
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Figure 12: Head pan angle predictions from our VC
method for selected DPOSE image patches. Ground
truth is shown in green, VC estimate in black.

Variable Camera Threshold
0 1 2 3 4 5 6 7 8 9

M
ea

n 
A

ve
ra

ge
 E

rr
or

 (
de

gr
ee

s)

8

10

12

14

16

18

20

M
ea

n 
C

am
er

as

1

1.5

2

2.5

3

3.5

4

Figure 13: For variable-camera selection, pose esti-
mation error decreases and the number of cameras
sampled increases as the threshold increases.

camera networks. Here, we compare several variants of our
method:
• Single-camera (SC) is the baseline approach, evaluated

per-camera.
• Best-camera (BC) applies SC to each camera and re-

turns the highest-confidence estimate.
• All-cameras (AC) applies SC to each camera and ag-

gregates the predictions.
• Variable-cameras (VC) incorporates our dynamic cam-

era selection scheme.
Each method used the same ensemble of exemplars. Two
sets of head pose patches were used to train the models, 960
examples each for training and validation. The scaling con-
stant, α = 0.05 and the number of top-scoring exemplars,
K = 25. In practice, our algorithm is robust to a range
of values for these parameters. Figure 11 shows the results
for head pose localization on DPOSE reported as the mean
absolute error of the prediction compared to the provided
ground truth over 1000 testing examples, averaged over 5 tri-
als. The multi-camera methods (AC and VC) outperformed
the single-camera methods (SC and BC), with the dynamic
camera selection scheme (VC) performing comparably to the
all-cameras (AC), with less computation. Figure 12 shows
example predictions from our VC method.

For the variable-cameras (VC) method, the confidence
threshold serves as a tunable parameter that changes the

Table 1: Discrete head pose classification accuracy.
Method Accuracy
Ours 85.22%
Yan 2013 86.10%
Yan 2014 (HOG) 80.00%
Yan 2014 (HOG+KL) 87.00%

Figure 14: For each image, the ground truth class is
green and an incorrect classification is red.

behavior from the single-camera to all-cameras paradigms.
As such, pose estimation error decreases and the number
of cameras sampled increases as the confidence threshold
increases. Figure 13 shows these trends for head pan an-
gle estimation with DPOSE. In our experiments, we set the
variable camera threshold, τ = 1.0.

4.3 Discrete Head Pose Classification
Previous methods that have used DPOSE have only pro-

vided predictions for head pan angle into one of eight 45◦

bins. To compare our results to recent related work, we fol-
low the ensemble exemplar learning approach previously de-
scribed with the modification that the label associated with
each exemplar corresponds to one of 8 classes rather than
the provided real-valued ground truth. We follow the same
experimental protocol as other recent work [17]. For train-
ing, the scene is divided into four quadrants and 30 training
examples are randomly selected from each region for each of
8 quantized head poses. Results are averaged over 5 trials.

While our method was designed to provide precise real-
valued predictions of head pose, it is competitive with the
state of the art for the discrete classification task. Table 1
compares the classification accuracy of our method with sev-
eral recently published approaches. Figure 14 shows exam-
ple results from our method for this discrete prediction task.
Closer inspection of the results shows that most of the er-
rors in our variable-camera approach tend to lie within one
discrete bin of the true pose. Since our method on this
data achieves a mean absolute error of 8.59 degrees, it is
likely that some portion of the misclassifications are due to
quantization artifacts at the boundaries of the artificially-
defined classes. Figure 15 shows the confusion matrix for
the variable-camera pan classification experiment. Each row
represents the true pose angle, and each column the angle
predicted by our method. The diagonal banding illustrates
the tendency of errors to fall in neighboring classes.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we described a novel approach for head
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Figure 15: Confusion matrix for discrete pan angle
classification on DPOSE.

pose estimation designed for multi-camera networks. Our
framework is robust to low-resolution images, poorly local-
ized bounding boxes, and appearance changes induced by
changing person location in the scene. The computational
requirements are also modest due to the use of inexpen-
sive features and fast linear classifiers. In addition, we de-
scribed a variable-camera scheme to dynamically select a
subset of the available cameras for pose estimation, allow-
ing for explicit trade-off between efficiency and accuracy.
Experiments on a benchmark dataset show that our ap-
proach provides discrete classification accuracy on par with
the state-of-the-art.

For future work, we plan to explicitly incorporate tem-
poral smoothness in a tracking framework to better inform
the camera selection process and reduce the overall number
of views required for accurate estimation. Additionally, we
plan to investigate methods to improve the single-camera
prediction, with an eye toward further reducing computa-
tion requirements.
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