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An Evaluation of Gamesourced Data for Human Pose Estimation
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Gamesourcing has emerged as an approach for rapidly acquiring labeled data for learning-based, computer
vision recognition algorithms. In this article, we present an approach for using RGB-D sensors to acquire
annotated training data for human pose estimation from 2D images. Unlike other gamesourcing approaches,
our method does not require a specific game, but runs alongside any gesture-based game using RGB-D
sensors. The automatically generated datasets resulting from this approach contain joint estimates within a
few pixel units of manually labeled data, and a gamesourced dataset created using a relatively small number
of players, games, and locations performs as well as large-scale, manually annotated datasets when used as
training data with recent learning-based human pose estimation methods for 2D images.
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1. INTRODUCTION

Recently, many recognition problems in computer vision have been formulated as super-
vised machine-learning problems in which, typically, the most tedious step is acquiring
accurately labeled examples for training and testing. For images and video, depending
on the problem, this typically involves a human clicking pixel locations or delineat-
ing image regions. Amassing and validating the hundreds or thousands of annotated
examples needed for modern large-scale learning methods can be a time-consuming
process. In recent years, the computer-vision community has embraced the idea of
crowdsourcing this aspect of ground-truth annotation to distribute the manual effort
to large numbers of nonexpert users. An increasingly popular method of crowdsourc-
ing, known as “gamesourcing,” uses video-game achievements as incentive to engage
users. In the computer-vision domain, a number of games have been developed to aid
in the process of collecting data for problems such as object recognition [Von Ahn and
Dabbish 2004], object localization [Von Ahn et al. 2006], and face detection [Ho et al.
2007]. In these cases, games have been designed specifically to be used for gamesourc-
ing data for the respective problems. In this article, we present an approach for using
gamesourced data to train and test learning-based human pose estimation algorithms.
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Our approach takes advantage of the benefits of gamesourcing without the effort of
explicitly designing a custom game.

The emergence of low-cost, RGB-D sensors, such as Microsoft’s Kinect, ignited a
flurry of projects that took advantage of real-time, vision-based depth sensing for gam-
ing, gesture-based control, and virtual reality. RGB-D sensors have simplified difficult
computer-vision problems, such as person detection and pose estimation, by sidestep-
ping the depth ambiguity inherent in flat images. However, there is still a need to solve
these types of problems from 2D imagery. Our gamesourcing method uses RGB-D sen-
sors to rapidly acquire annotated data for human pose estimation from 2D images. We
take advantage of the fact that these sensors are commonly used for gaming to tap into
a diverse pool of willing participants. As with all crowdsourced data, it is important to
validate that the data is reliable. In this article, which extends a small pilot on single
game with a few users [Souvenir et al. 2012], we describe how we collect and filter
data from an RGB-D sensor during gameplay and compare our automatically gener-
ated data to manually curated datasets regularly used to train and test learning-based
human pose estimation algorithms on 2D images.

2. RELATED WORK

We present an automated approach for capturing labeled data for human pose esti-
mation through gamesourcing, specifically gameplay using an RGB-D sensor. Here, we
review related work in gamesourcing for computer vision, Kinect-based datasets, and
pose estimation datasets.

2.1. Gamesourcing for Computer Vision

To annotate images for object recognition, the Google Image Labeler and the ESP game
[Von Ahn and Dabbish 2004] allow an anonymous pair of players to suggest descriptive
terms for unlabeled images. Peekaboom [Von Ahn et al. 2006] allows two players to
localize objects in a scene by identifying and labeling regions of images using terms
previously collected from the ESP game. PhotoSlap [Ho et al. 2007] is a game for face
recognition that lets players match the same person in different images. These methods
have been very useful for rapidly acquiring new sources of training data for a variety
of supervised learning tasks, but, unlike our approach, which can be applied to any
gesture-based game with an RGB-D sensor, require the development of a new game
targeted to the specific data collection task.

2.2. Kinect-Based Datasets

The increase in popularity of inexpensive RGB-D sensors has correlated with an in-
crease in publicly available datasets generated using these sensors. Generally, these
datasets are the 3D analogs of popular 2D datasets, with much of the focus on ob-
ject recognition. The Berkeley 3-D Object Dataset (B3DO) [Janoch et al. 2011] is an
indoor-environment object detection dataset that includes RGB and depth images, as
well as manual class annotations, crowdsourced via Amazon Mechanical Turk (AMT).
Unlike many datasets, B3DO is not fixed; there is a mechanism to add data and anno-
tations through online submission. The RGB-D Object Dataset [Lai et al. 2011] from
the University of Washington similarly combines RGB and depth images, and includes
multiple views of each object recorded. The Microsoft Research Cambridge-12 Kinect
gesture dataset [Fothergill et al. 2012] includes several hours of people performing
specific gestures, and contains joint estimates from a Kinect sensor. The RGB-D People
Dataset [Spinello and Arras 2011] was developed for human detection and is manually
annotated with the locations of the people in the scenes. Because we are proposing not
a dataset but a method for generating datasets, compared to these approaches, our
method allows for an ever-growing dataset as more data is collected from gameplay.
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Table I. Comparison of Pose Estimation Datasets

Dataset Images Scene Body Joints
PARSE 305 Outdoor Full 14
BUFFY 748 Indoor Upper 12
STICKMEN 549 Indoor Upper 14
H3D 1240 Both Full 20
LEEDS Sports 10,000 Outdoor Full 14
Gamesourced - Indoora Full 24

aMS Kinect is typically used indoors but has also been
used outdoors [Milani and Calvagno 2012].

Moreover, each of these datasets requires some form of manual annotation, which is
not necessary for our method.

2.3. Pose Estimation Datasets

Our gamesourcing model results in an annotated dataset that can be used as training
and testing data for 2D pose estimation. There are several existing manually annotated
datasets. PARSE [Ramanan 2007] consists of 305 outdoor images of people (∼150 pixels
tall) mostly playing sports, and contains high background clutter and self-occlusions.
BUFFY [Ferrari et al. 2008] was collected from several TV episodes of “Buffy the Vampire
Slayer” and consists of 748 images from mostly indoor scenes. People appear at different
scales and the background is highly cluttered. PASCAL STICKMEN [Eichner and Ferrari
2009] is a subset of PASCAL VOC 2008 and contains 549 low- to medium-quality images
of people mainly standing. Similar to BUFFY, only upper-body annotations are provided.
HUMANS IN 3D (H3D) [Bourdev and Malik 2009] contains 1240 high-quality images of
people with 3D joint positions. The LEEDS Sports Pose [Johnson and Everingham 2010]
dataset consists of 2,000 annotated images (recently extended to 10,000 [Johnson and
Everingham 2011]) of people (∼150 pixels tall) performing sports activities.

Table I summarizes the related manual datasets and provides a comparison to the
type of data possible using a gamesourced approach. The advantages of gamesourcing
in annotating this type of data are scalability and flexibility. The number of possible
images that can be collected is not limited by budgets for manual annotation or time of
human annotators. Data can be collected in a wide variety of environments by a wide
variety of people of various sizes and body styles. The resulting data contains images of
reasonable quality with more joint annotations than current manual approaches. Some
potential drawbacks to gamesourced data include the backgrounds typically being lim-
ited to indoor environments and the constraints in poses introduced by most games
(e.g., players face the camera, complex or acrobatic poses are not used). In Section 5.2,
we build a gamesourced dataset to compare to manually annotated datasets and demon-
strate that these perceived limitations do not have a significant effect on the accuracy
of pose estimation algorithms.

3. DATA COLLECTION AND FILTERING

RGB-D sensors, such as Kinect, provide depth estimates at each pixel in addition to
color information. Pose estimation methods that incorporate depth information far
outperform their 2D analogs. In fact, it is the accuracy of 3D pose estimation that
we will leverage to generate labeled data for the 2D problem. Middleware commonly
used with Kinect sensors (e.g., Microsoft SDK, OpenNI/NITE) employs fast algorithms
for real-time 3D joint position estimation. Up to 24 joint locations can be obtained
from Kinect.1 Figure 1 shows an example of output from Kinect during gameplay:

1The Windows Kinect driver returns 20 locations (head, neck, shoulders, elbows, wrists, hands, torso, waist,
hips, knees, ankles, and feet). The OpenNI driver adds four (collars and fingertips).
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Fig. 1. We collect annotated images from motion-based games as training data for pose estimation from 2D
images. Microsoft Kinect outputs (from left to right): an RGB image, depth map, and joint locations.

an RGB image, depth map, and joint locations. A typical gaming session generates a
large amount of data, much of it not needed. The most direct approach would be to
simply store all of this data over the course of the gaming session. However, much
of the data is either unusable or unnecessary. First, although the depth-based pose
estimation algorithms are usually reliable, there can be instances in which erroneous
data is extracted. Second, consecutive frames or images of a player repeating a pose
can be quite similar and, therefore redundant. These two issues could be addressed as
a postprocessing operation after the gaming session. However, as our data collection
runs alongside the game on consumer-grade hardware, the I/O overhead of saving this
amount of data to disk could negatively impact real-time gameplay. In this section, we
describe our methods for real-time filtering of noisy and redundant data.

3.1. Misregistered Data

At each time step, a candidate image and joint position estimates are evaluated to
check for registration. We perform three simple tests to quickly eliminate potentially
erroneous data. First, we rely on the confidence values returned by the 3D pose esti-
mation algorithms used by the RGB-D sensor. Images containing at least one joint of
low confidence are discarded. Figure 2(a) shows a sample image in which the positions
of the right elbow and right-hand joints have low confidence scores; this frame would
not be saved. Second, using the foreground mask supplied with the depth data, any
instances in which joints fall outside of the foreground, such as in Figure 2(b), are
also discarded. This situation most often arises in cases of very fast motion or joint
self-occlusion. Finally, most image-based pose estimation methods extract patches sur-
rounding the joint location. Cases in which a joint location is too close to the image
border for a patch to be extracted are discarded. Each of these tests can be applied in
real time, and depending on the amount of player motion, typically preserve 10% to 30%
of the candidate frames. In Section 5.1, we show how these simple tests significantly
reduce the registration error between the joint estimates and ground truth.

3.2. Redundant Data

For learning methods, similar examples in the training data provide little additional
benefit. In our case, this corresponds to images of a player in similar poses, which often
occurs in sequential frames or when the player is performing a repeated action in a
game. To quickly determine if a similar pose has already been collected, we use a variant
of locality-sensitive hashing (LSH) [Datar et al. 2004] for finding nearest neighbors
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Fig. 2. Examples of filtering misregistered data. Green circles represent joint estimates of high confidence
within the foreground mask and red squares represent estimates of low confidence or outside the foreground
mask. In both cases, these images and joint estimates would be discarded.

in high-dimensional spaces. Given a query point and a database, LSH discovers the
approximate nearest neighbors, using the Euclidean distance, in sublinear (in the
number of database elements) time.

LSH projects high-dimensional points onto sets of random vectors under the principle
that nearby points (in the ambient space) will project to similar locations more often
than more distant points. LSH uses L groups of k hash functions that map a high-
dimensional point, v, onto the set of integers. The hash functions, h, take the form:
h(v) = �a·v+b

w
� where (vector) a and (scalar) b are randomly selected and w is a small

integer (4 is the default value). Two points vi and v j , which match all k hash values for
any of the L groups, are putative nearest neighbors. The Euclidean distance is used to
determine whether or not the points meet the threshold, R, to be considered similar.
Typically the number of matches is small, thus this scheme avoids the linear-time
approach of calculating the distance between the query and all database points.

Let yt = 〈Ht, Nt, . . . , RFt〉 be the vector of concatenated pixel locations of the joints
(as defined in Figure 3(b)) at time t. To provide invariance to global pose shifts, we
apply an affine transformation to each point from canonical image coordinates to a
space defined (in the positive y direction) by the unit vector from the neck (N) to the
head (H). Let y′

t represent the array of transformed points. At each timestep, t, y′
t, is

hashed using LSH. If there is a collision with an existing database pose (i.e., the two
pose vectors are within R units), the current data is discarded. If not, the pose is added
to the database as a unique pose, and the corresponding image is also saved. This
process continues until the gaming session ends or resource limitations are reached.
Figure 4 depicts the process of discarding nonunique poses. In Section 4.3, we describe
LSH parameter selection.

4. BUILDING GAMESOURCED DATASETS

In this section, we describe how we built a gamesourced dataset using the frame-
work outlined in Section 3. Our method, PoseGrabber, was developed in C++ and runs
alongside Kinect-based PC games.

4.1. Hardware

All experiments were carried out on a Windows 7 laptop with a 3.33GHz CPU and
8GB RAM. PoseGrabber, as described, could be deployed using either of the two most
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Fig. 3. To provide invariance to global pose shifts, we apply an affine transformation to each point from
canonical image coordinates to a space defined (in the positive y direction) by the unit vector from the neck
(N) to the head (H).

Fig. 4. Real-time pose uniqueness check. If a new pose collides with an existing database pose, it is discarded;
otherwise it is added to the database. Using LSH, the collision checks occur in sublinear time (in the number
of database items).

popular RGB-D sensors, PrimeSense 3D Sensor or Microsoft Kinect. The PrimeSense
device provides built-in capabilities for temporally synchronized RGB and depth im-
ages, which is not the case with Kinect. Slight asynchronicity between the RGB and
depth images does not affect gameplay; however, to use this data for training pose es-
timation algorithms, it is important that the joints and images are captured as nearly
simultaneously as possible. In order to ensure that the data is temporally synchronized,
we include an additional check of the data. In a call to the Kinect data acquisition func-
tion, the current RGB image and depth image are returned with individual timestamps
(in ms), which we refer to as tRGB and tDEP , respectively. Because the joint estimates
are derived from the depth images, their timestamps are the same for a given in-
stance. We determined the registration offsets empirically by manually identifying the
joint positions in a small set of depth and RGB images and measuring the sum of the
squared differences to those returned by Kinect. Alignment error was minimized when
tDEP − tRGB ∈ [5, 15]. On an unloaded system, data can be acquired at 30 frames per
second. If the timestamp differences align within the time window, the data is assumed
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Fig. 5. Three different games were used to collect data for evaluation.

to be synchronized and retained for further processing, as described in Section 3. Due
to both the asynchronicity between sensors and occasional dropped frames, during a
typical gaming session, between 2% and 30% of the data is preserved.

4.2. Games

To vary the set of poses the players would perform, we selected three different gesture-
based Kinect games for the PC: Astrojumper [Finkelstein et al. 2011], Kung Fu Tetris
[Kinect Hacks 2012], and ICM Virtual Playground. Each of the games was evaluated
by a variety of users in a variety of locations. Figure 5 shows a screenshot of each game
and the corresponding image of the user in the inset.

—Astrojumper is a full-body, Kinect-based game developed to motivate exercise. The
player controls a flying avatar as different objects (e.g., asteroids, planets, ships)
speed by. Points are earned by touching certain objects, avoiding others, and “shoot-
ing” enemies using punching motions. This version of Astrojumper was modified to
use Kinect on a PC via the Flexible Action and Articulated Skeleton Toolkit (FAAST)
[Suma et al. 2011].

—Kung Fu Tetris is a Kinect-based modification of the traditional Tetris game, allowing
players to direct blocks by kicking. Side kicks move blocks left and right, while
forward kicks rotate the blocks. Points are earned for positioning blocks to complete
rows. This version of Tetris uses FAAST to map player foot motion to keyboard input.

—ICM Virtual Playground is a virtual environment designed to showcase the potential
for controlling a virtual character using Kinect. The game allows a player to control
a full-body avatar and interact with a series of objects, such as monkey bars, ramps,
and a zipline. There are no points or time limit; the player is free to explore the
environment as desired.

4.3. Parameter Selection

The data-filtering steps involve a number of free parameters. For all experiments, the
following settings were used.

Data Registration. The OpenNI drivers for Kinect provide confidence values for each
joint estimate in the range [0, 1]. Low confidence values tend to correspond to inaccurate
matches due to self-occlusion or fast motion, thus we discard any poses containing at
least one joint with a confidence score less than 1. This conservative approach dis-
cards potentially useful poses, but we observed that we still collected many registered
matches. Additionally, to allow for image patch extraction around each joint, poses with
joint estimates within 10 pixels of the border were also discarded.

Redundant Data. A key step in the real-time processing of the matched joint/image
pairs is the uniqueness check using LSH. LSH has four free parameters, R (Euclidean
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Fig. 6. The graph shows the amount of data saved per minute as a function of the similarity threshold,
R. The images show examples of the closest unique poses from a 3-minute gaming session. At R = 1, the
poses are similar and would be redundant for training. At R = 5, only nine unique poses were saved, thus
interesting poses were likely missed.

distance threshold to be considered a match), k (number of projection vectors), L (num-
ber of hash functions), and γ (the probability that a near neighbor is not reported).
The E2LSH package provides a method for optimizing k and L given sample data, R and
γ , to minimize the expected query time. For γ , we used the LSH default value of .1
(90% success probability). R implies a trade-off between the amount of data collected
and the similiarity of the “unique” poses saved. We tested a range of values for players
engaged in a 3-minute session of Astrojumper. Figure 6 shows the plot of the amount
of data saved per minute as a function of R and examples of the closest (in Euclidean
distance) poses of the resulting sets of saved images. This parameter provides a way to
tune the amount of data collected over the course of a gaming session, perhaps due to
storage limitations or I/O overhead. For our tests on a standard laptop, R = 2, provided
a reasonable balance between the size of the set of unique poses returned and the file
size of the data saved. For the remaining experiments, we use R = 2, γ = .1, k = 10,
and L = 55.

4.4. Gamesourced Datasets

We constructed datasets for each of the three games (see Section 4.2) and a fourth
dataset that combines the three. ASTRO consists of data from 15 different people play-
ing Astrojumper for roughly 4 minutes each. KFT contains data from 17 different
people playing Kung Fu Tetris for roughly 3 minutes each. ICM contains data from
14 different people playing ICM Virtual Playground for roughly 3 minutes each. Over
all game sessions, we recorded in excess of 50,000 images. Each dataset is constructed
by randomly selecting 300 images2 each from the total collected for each game, split
evenly into training and testing sets. The combined dataset, GS, was constructed by
randomly selecting 100 images from ASTRO, KFT, and ICM.

5. EVALUATION

To evaluate the use of PoseGrabber to collect annotated gamesourced data automat-
ically requires a multifaceted approach. First, we examine the accuracy of the joint
estimates returned by the sensor and quantify the effects of the simple filtering meth-
ods described in Section 3. Second, we evaluate how a dataset constructed using this

2Only 300 images were used in the evaluation of the gamesourced data to allow for a fair comparison to the
manually annotated datasets. One of these, PARSE only contains 305 total images.
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Fig. 7. Error (in pixel units) of Kinect joint estimates for data used in gamesourced dataset and discarded
by our real-time filtering method. Error bars represent one standard deviation.

gamesourced approach compares to existing, manually annotated 2D pose estima-
tion datasets using two recently developed, learning-based pose estimation algorithms
[Yang and Ramanan 2011; Sapp and Taskar 2013]. Third, we evaluate the effect of
game choice on the quality of the resulting dataset.

5.1. Joint Estimate Accuracy

To estimate the accuracy of the joint estimates in the gamesourced data, the images
in GS were manually annotated. Additionally, we selected a subset of images and joint
estimates that were discarded using the methods described in Section 3 and compared
those estimates to manually annotated labels. Figure 7 shows the mean error, in pixel
units, between the Kinect joint position estimates and ground truth for both the GS
data and the discarded data. For all joints, the filtering process returned more accurate
data; in some cases (e.g., head, hands), the error was worse by more than 100%. For
the GS dataset, generally error is low (within a few pixels). The highest error joints are
the feet, which the Kinect typically estimates higher than a human observer would,
and neck, which is typically estimated lower.

5.2. 2D Pose Estimation Experiments

Recent methods for 2D pose estimation use a discriminative approach that collects
statistics on labeled datasets for model building [Felzenszwalb et al. 2009; Rosales
and Sclaroff 2001; Sminchisescu et al. 2005]. Methods for pose estimation “by parts”
use human body models that differ in the number or type of joints specified. Our
experiments include two recent pose estimation methods.

5.2.1. Pose Estimators. We employ the 14-joint pose estimation model of Yang and
Ramanan [2011], which we refer to as YR. These 14 joints are a subset of those returned
by RGB-D sensors, thus the joint positions can be mapped directly. YR uses a mixture of
parts to estimate poses in 2D images. Through interpolation, the 14 input joint locations
are extended to 26 total locations and equal-sized image patches are extracted from
each location. Each patch is represented using the Histogram of Oriented Gradients
(HOG) descriptor, and SVM is used for classification. For pose estimation, instead of
searching for body parts individually to find a global configuration, the authors noted
that certain configurations between neighboring body parts tend to be overrepresented.
The limbs are modeled based on the relative positions of parent and child joints, and a
compatibility measure is calculated based on the co-occurrences of pairs.
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Fig. 8. Example images from the datasets used in the experiments.

The second model is the Multimodal Decomposable Models for Human Pose Estima-
tion (MODEC) [Sapp and Taskar 2013]. MODEC trains a set of locally linear models
for representative joint configurations based on HOG descriptors. Whereas YR focuses
on local-part reasoning (i.e., parent and child joints), MODEC considers global pose
configurations in addition to locating individual joints. These configurations, or modes,
are learned in an unsupervised fashion from training data. Global mode inference en-
ables MODEC to estimate poses more quickly, avoiding the necessity of considering all
possible pairs of joint combinations. For this experiment, we use the MODEC 6-joint
model (shoulders, elbows, and wrists), mapping the relevant joints from the larger set
returned by the RGB-D sensor.

5.2.2. Data and Experiments. We compare our combined gamesourced dataset GS to
three of the manually constructed datasets (PARSE, BUFFY, LEEDS). Figure 8 shows
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Table II. YR Pose Estimation Results in PCP (Higher is Better)

Training
Testing GS PARSE LEEDS BUFFY

GSa 0.92 0.84 0.62 0.78
PARSE 0.70 0.78 0.59 0.70
LEEDS 0.61 0.70 0.55 0.57
BUFFY 0.68 0.71 0.67 0.85
Average 0.73 0.76 0.61 0.73

aThe GS test set uses manually annotated joint locations.

Table III. MODEC Pose Estimation Results in PCP (Higher is Better)

Training
Testing GS PARSE LEEDS BUFFY

GSa 0.54 0.38 0.37 0.46
PARSE 0.48 0.48 0.40 0.41
LEEDS 0.33 0.33 0.38 0.32
BUFFY 0.42 0.23 0.34 0.49
Average 0.44 0.35 0.37 0.42

aThe GS test set uses manually annotated joint locations.

sample images from each dataset. For each dataset, we randomly selected 300 images
each, split evenly into training and testing sets. Using each of the two pose estimation
methods, we performed pairwise pose estimation experiments with each of the four
training and testing sets. For GS, we used the automatically estimated joints for train-
ing. However, for test images, we used the manually annotated joint locations. Results
for these tests are reported as Percentage of Correctly estimated Parts (PCP).3 Table II
shows the results using the YR model, and Table III shows the results with MODEC.

5.2.3. Results. Overall, using the YR model, the gamesourced dataset, GS, performed
about as well as the manually curated sets when used as training data. On average,
PARSE performed best, with GS and BUFFY proving nearly as effective. Except for LEEDS,
each training set performed best when the test set was drawn from the same source.4
GS for training and testing resulted in the highest performance over all experiments.
Compared to PARSE and LEEDS, for which each image contains a different person and
background, the limited number of different activities, players, and locations could ex-
plain the similarity of the scenes. However, the apparent relative lack of data diversity
in GS did not negatively affect the performance when used as training data with test
data from other datasets. Overall, GS data outperformed data from LEEDS and was
equally as effective as BUFFY when used as training data across all of the images.

With the MODEC model—similar to YR—for each dataset used in testing, the highest
result is achieved when the matching dataset is used for training. In each case, the
second-best results are achieved by the GS model. On average, the model trained on
GS performs best across all the test sets. Overall, PCP scores are lower for MODEC
than YR. ISapp and Taskar [2013] observe that the method is sensitive to the amount

3Percentage of Correctly estimated Parts (PCP) [Ferrari et al. 2008] is a widely used metric for 2D pose
estimation accuracy. A body part is considered correctly labeled if it lies within 50% of the length of the
ground truth body-part segment. BUFFY contains annotations for only the upper body, thus the corresponding
results include only upper-body joints.
4This phenomenon has also been observed in the domain of object recognition from images; in this domain
it was discovered that, when performing training and testing on combinations of datasets, the highest
recognition scores resulted from matched sets [Torralba and Efros 2011].
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Fig. 9. Example results from the YR experiments summarized in Table II. Each row shows example results
on the same image with training data from the gamesourced data (GS) or the manually constructed datasets
(PARSE, LEEDS, and BUFFY).

of training data; increasing the training data by an order of magnitude significantly
increased the training accuracy and computational resource consumption.

Figure 9 shows example results using the YR model with the estimated pose overlaid.
Each row shows a test image used with different training data. The first image, from GS,
shows an example for which, when trained with the gamesourced data, the algorithm
was able to correctly discover a case of self-occlusion. The second image, from BUFFY,
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and third image, from LEEDS, both show a simple pose in a cluttered background, that
was missed in some cases. The fourth image, from GS, and fifth image, from PARSE,
both show a moderately difficult pose that was successfully identified when trained on
the GS dataset. The sixth image, from PARSE, was difficult in all cases.

Figure 10 shows example results using MODEC with the estimated pose overlaid.
Each row shows a test image used with different training data. The first three images
show relatively simple poses from BUFFY, GS, and LEEDS, respectively, in which MODEC
generally performs well irrespective of which dataset is used for training. The fourth
and fifth images, from GS and LEEDS, show examples of self-occlusion, which MODEC
successfully identifies when trained on the GS dataset. The sixth and seventh images,
both from PARSE, show more difficult poses for which MODEC performs poorly when
trained with any of datasets.

One notable difference between the images in each set was the apparent variance of
the poses. PARSE and LEEDS contain examples of athletes engaged in complex mid-air
maneuvers. To estimate the pose variance, we performed Principal Component Analysis
(PCA) on the vectors of joint positions, transformed as described in Section 3, for 150
images from each set and computed the number of components necessary to represent
95% of the variance. Table IV shows the pose variance estimates for the upper, lower,
and full body joints for the four datasets, averaged over 100 trials with subsets of
the datasets of 150 images. The measure appears to match the visual diversity in the
poses present in the datasets. However, in general, the pose variance did not correlate
with performance on pose estimation. For example, PARSE has the greatest whole-body
variation among the four datasets. However, while we observed the highest average
PCP with PARSE when using the YR model, with the MODEC model, PARSE has the
lowest average PCP.

5.3. Game Selection

The three games selected each induced a different series of actions in the players.
Astrojumper typically involves full-body motion (e.g., hopping, ducking), while Kung
Fu Tetris responded only to leg actions, and ICM Virtual Playground relied mostly on
upper-body motion. To determine whether or not game selection affected the quality
of the resulting data source, we performed 2D pose estimation experiments using data
from each game individually. Using the YR model from Section 5.2, we performed 9
pairwise pose estimation experiments with ASTRO, KFT, and ICM. Table V shows the
results for these tests, reported as Percentage of Correctly estimated Parts (PCP). In
spite of the different requirements and actions induced by each game, the PCP scores
were similar regardless of which dataset was used for testing and training. We also
compared the pose variance of each game. Table VI shows the pose variance estimates
for the upper, lower, and full-body joints for the three datasets, averaged over 100 trials
with subsets of the datasets of 150 images. The similarities in PCP and pose variance
scores matches the visual analysis of the images. Even though certain games empha-
sized lower- or upper-body motions, most players made full-body motions in the course
of playing the games. This suggests that any game that incorporates some real-world
actions can be suitable for use in this gamesourcing framework.

6. DISCUSSION AND FUTURE WORK

We presented a framework for collecting automatically labeled data through game-
sourcing, dramatically reducing the manual effort of data annotation. Our approach
does not involve a game specifically developed to facilitate crowdsourcing; it can be
used with existing gesture-based games. In an evaluation of a dataset created with our
method using two different pose detection algorithms, we achieved results comparable
to training with manually annotated data. These results may be unexpected since the
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Fig. 10. Example results from the MODEC experiments summarized in Table III. Each row shows example
results on the same image with training data from the gamesourced data (GS) or the manually constructed
datasets (PARSE, LEEDS, and BUFFY).
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Table IV. Pose Variance Estimates

Dataset Upper Lower Whole body
PARSE 7.08 4.00 9.36
LEEDS 6.83 3.74 8.55
BUFFY 7.29 N/A 7.21
GS 4.02 3.94 7.17

Note: Upper refers to the top 10 joints and
lower to the bottom 4.

Table V. PCP Results (Higher is Better) for Training and Testing
with Images from Three Gamesourced Datasets

Training
Testing ASTRO KFT ICM
ASTRO 0.92 0.85 0.82
KFT 0.85 0.88 0.80
ICM 0.82 0.81 0.89

Table VI. Pose Variance from Gamesourced Datasets

Dataset Upper Lower Whole body
ASTRO 4.00 3.90 7.15
KFT 4.22 4.00 7.31
ICM 4.19 3.91 6.16

Note: Upper refers to the top 10 joints and lower to the
bottom 4.

gamesourced data was collected from a relatively small number of players in a limited
number of indoor settings, playing only a few different games and performing a re-
stricted set of motions dictated by the game. In spite of these perceived limitations, our
evaluation shows that a pose estimation algorithm trained on gamesourced data was
able to detect poses from a wide variety images, including those containing actors from
television shows and outdoor athletes in the middle of complex midair maneuvers.

While we expect the diversity of data collected via gamesourcing to increase with the
number and type of games and users, this will not overcome the inherent limitations
of gesture-based gaming. Even the most enthusiastic gamer is unlikely to execute the
type of acrobatic actions performed by outdoor athletes, and most games require the
player to face the camera and monitor. However, when compared to data from existing
pose databases, our results suggest that these limitations do not negatively impact the
quality of the data for training pose estimation algorithms.

Beyond passive data collection, one possible direction for future work would be to
incorporate this module into a specific game or game engine to dynamically adjust
the goal or position of objects to compel users to perform underrepresented or desired
poses. This proposed extension moves away from the general-purpose, game-agnostic
approach of our framework and more closely follows the model of game-specific crowd-
sourcing, but could be used to collect specific poses or incentivize players to perform
different or complex motions.
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