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ABSTRACT

We present a framework for early action recognition in a
multi-camera network. Our approach balances recognition
accuracy with speed by dynamically selecting the best cam-
era for classification. We follow an iterative clustering ap-
proach to learn sets of keyposes that are discriminative for
recognition as well as for predicting the best camera for clas-
sification of future frames. Experiments on multi-camera
datasets demonstrate the applicability of our view-shifting
framework to the problem of early recognition.

CCS Concepts

eComputing methodologies — Activity recognition
and understanding; Supervised learning by classification;
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1. INTRODUCTION

For human action recognition, certain poses are highly
predictive for particular actions. Methods based on this ob-
servation have been applied in the single-camera setting [9,
14]. However, for distributed camera networks, most meth-
ods focus on more computationally expensive approaches,
such as integrating multiple cameras or learning new 3D
features. To take advantage of multiple viewpoints while
retaining the computational efficiency of single-camera 2D
recognition approaches, we revisit the idea of discriminative
poses and adapt it to the multi-camera setting.

We present an approach to multi-camera action recogni-
tion that, for a given subject, dynamically selects the camera
most likely to observe a class-discriminative pose. Figure 1
shows an example where some cameras in a network observe
a class-discriminative pose sooner than others. Our method
facilitates early recognition by learning shift-discriminative
poses, which are not predictive for a particular class, but for
a class-discriminative pose being observed from a different
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Figure 1: For this “wave”, a class-discriminative

pose (green box) is observed at different times in
each camera. We present a method for early ac-
tion recognition that dynamically selects the camera
most likely to observe a discriminative pose.

camera in the network. Our approach limits computation in
two ways. First, instead of aggregating information from all
of the cameras, one camera is dynamically selected for recog-
nition at each frame. Second, our approach is applicable to
early recognition and can predict an observed action prior
to its completion. The contributions of this paper are: (1)
iterative discriminative learning to identify keyposes; (2) dy-
namic view-shifting in multi-camera networks; and (3) dis-
criminative poses for early recognition.

2. RELATED WORK

There has been extensive work in human action recogni-
tion from video [20]. Many multi-camera methods use multi-
view geometry to construct 3D models and solve 4D (3D plus
time) recognition problems (e.g., [18]). These computation-
ally-expensive methods require either 3D model construction
or searching a large parameter space. Other approaches,
rather than explicitly constructing 3D models, use a set of
2D image views with some aggregation scheme (e.g., [22]).
These approaches tend to be computationally more efficient
than the 4D methods, but still require computation for each
camera in the network. Our approach neither fits 3D mod-
els nor requires computation at each camera per target, but
selects a single view for recognition dynamically.

Other work has also considered the idea of selecting a sin-
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Figure 2: To learn a set of discriminative clusters of poses, classifiers are trained on local regions of feature

space using cross-validation to prevent overfitting.

gle best view. Rudoy et al. [12] presents a method to identify
the best viewpoint for an action from a human observer’s
standpoint based on motion features. Other approaches se-
lect the best view based on the number of spatio-temporal
features detected [21], estimated camera distances and per-
son orientation [15], or silhouette properties [10]. Unlike our
approach, which learns to predict the next best view based
solely on the current view, these methods still require fea-
tures to be computed for every camera at each time step.

Several approaches have sought to learn keyposes for ac-
tion recognition. Cheema et al. [1] learns weights based on
the predicted discrimination power of poses learned in an un-
supervised fashion. By contrast, other methods (e.g., [23])
directly incorporate measures of discriminative power to se-
lect keyposes. Methods based on Exemplar SVM [11] have
been used to learn discriminative features for action recog-
nition [6] or visual words for scene recognition [3].

There has been some recent work in early event detec-
tion from video. One method [2] used reliable-inference to
predict the beginning of event, but required manual configu-
ration to fit the data. Schindler and Van Gool [14] observed
that short sequences are often sufficient to recognize a longer
sequence. Another approach computes bags of features for
each possible action subsequence and matches new observa-
tions probabilistically with dynamic programming [13], but
requires a priori specification of the fraction of the sequence
to be observed. Max-Margin Event Detection (MMED) in-
corporates a variant of structured output SVM to detect
incomplete actions [5].

Our approach extends the ideas of discriminative features
and early event detection to the multi-class setting resulting
in an algorithm that achieves performance on par with more
computationally expensive action recognition approaches.

3. DISCRIMINATIVE POSES

Discriminative feature learning incorporates class infor-
mation during the dictionary learning phase of training to
learn a set of features that are more discriminative during
the later stages of classification than features obtained in
an unsupervised fashion (e.g., k-means clustering). We ap-
ply this concept to learn both class- and shift-discriminative
poses for the problem of action recognition in multi-camera
settings.

3.1 Discriminative Pose Learning

Let X = {X1,X3,...,Xc} be a set of synchronized im-
age streams from C' different cameras. Each stream, X. =
{Xc,1,%ec,2,...}, could include example actions from a va-
riety of actors and relative positions. Each input sample,
Xe,i € RP, corresponds to a D-dimensional feature repre-
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sentation, which could be any descriptor used for action
recognition (e.g., [8,17])." Let y = {y1,y2,...} represent
the associated class labels for each frame.

We follow a recent approach for iterative discriminative
cluster learning, where, for each class, the goal is to iter-
atively learn an ensemble of discriminative local support
vector machine (SVM) classifiers [16]. Figure 2 illustrates
the method. For each class, the training examples are di-
vided into training and validation sets. For any positive
training example in a homogenous region (i.e., the ratio of
positive to total neighbors is above a threshold), a classifier
is trained using neighboring positive examples and all the
negative examples in the set. The classifier is applied to
the validation set, and the highest-scoring correct positive
examples are retained for training the classifier in the next
round. The classifiers are iteratively re-trained, each time
swapping the training and validation sets until the cluster
membership converges. In practice, the process converges
quickly, typically requiring less than five iterations.

To normalize the responses of the local SVM clusters, the
SVM scores are converted to posterior probabilities using
Platt scaling. Let C represent the ensemble of SVM models
returned by iterative discriminative cluster learning. For
an example, x, and label, y, the posterior probability of x,
P(y|C,x) is defined to be the maximum posterior probability
of the cluster SVMs in C associated with class label y. Let
¢(C,x) be a membership function that returns the label for
example x using discriminative cluster set, C:

argmax P(y|C,x) if max P(y|C,x) > T
P(C,x) = v (1)

%} otherwise

where 7 is a classification threshold. In our implementation,
we learn this value by cross-validation.

3.2 C(Class-Discriminative Poses

Class-discriminative poses can be obtained by direct appli-
cation of discriminative pose learning. For a given training
set, (X,y), for this phase only the class label is relevant; the
viewpoint and particular sequence that generated the exam-
ple are not used. Figure 3 shows some of the poses identified
as class-discriminative using this method.

3.3 Shift-Discriminative Poses

The intuition for shift-discriminative poses is that certain
poses may not necessarily indicate that a particular action
is taking place, but that some action may be taking place

'Depending on which is more natural in context, the terms
“frame” and “pose” will be used interchangeably to mean
“the feature representation of the subject in the frame”.



Figure 3: Class-discriminative poses (check watch,
cross arms, sit).
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Figure 4: Each bin represents a discretized portion
of the viewsphere; in this case, there are 10 azimuth
and 2 elevation bins. The icons represent the rela-
tive locations of cameras. Arrows of the same color
indicate the same (relative) view-shift.

and it may be preferable to observe the motion from a dif-
ferent viewpoint. That is, rather than being indicative of a
particular class, shift-discriminative poses are indicative of a
view-shift, specifically a shift to another view in the camera
network more likely to observe a class-discriminative pose.

A view-shift is a relative change of viewpoint. Poten-
tial view-shifts are determined by the physical location of
the cameras relative to the target. The view half-sphere
is discretized into a fixed number of azimuth and eleva-
tion offsets.? Let ¢, and ¢, be the discretized location of
two cameras in the network, represented in (cyclic) azimuth
and elevation; the view-shift between them is represented
as U = ¢p — Cm.- (0,0) represents maintaining the current
view, while (+1, —1), represents shifting to a camera one
offset around (azimuth) and one offset up (elevation) the
view-sphere. Figure 4 shows an example configuration where
the view-sphere has been divided into two elevation and ten
azimuth bins. For C' = 6 cameras, there are at most 30
(C x (C — 1)) possible view-shifts. The actual number of
potential view-shifts is often lower as there are shared view-
shifts. For example, in Figure 4, the view-shift (42, —1)
describes both the shift from camera 1 to 3 and 4 to 6.

For learning shift-discriminative poses, the viewpoint and
sequence membership of each frame are maintained during
training. Figure 5 represents a network with 5 cameras;
each row represents a sequence from a particular camera,
each unit represents a frame of video, and green boxes rep-
resent class-discriminative poses. Cameras 1, 3, and 4 will
encounter class-discriminative poses, while cameras 2 and 5
will not. Our goal is to learn when to view-shift to maximize
the likelihood of observing class-discriminative poses.

Shift-discriminative learning occurs in two stages. Based
on the set of class-discriminative clusters, Cc, training ex-
amples are assigned (potentially multiple) view-shift labels

2Most action recognition features are invariant to small
shifts and scale. This allows changes in viewpoint relative
to the subject to be represented by 2D translations on the
viewsphere.
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Figure 5: For a sequence captured by five cameras,
class-discriminative poses are shown in green.

Figure 6:
from the IXMAS data set.
associated view-shifts to alternate cameras.

Examples of shift-discriminative poses
The arrows illustrate

by the following recursively-defined rule:

0 if Tt it = %]
W) = 4 B o) Z )
-1 if ¢(Ccaxc’,i') #9

V¥ (x;,,(0,0)) otherwise

where VU is a compatibility function between frame x;; and
view-shift ¥, ¢ = ¢+ ¥ represents the resulting camera loca-
tion after applying view-shift, ¥, and i’ represents the index
of the next frame in the training sequence. In short, for
a given pose, Xc;, if a particular view-shift, ¥, leads to a
correct class-discriminative pose in the training data, the
pose represented by x.; is considered a positive example for
view-shift, . If, however, view-shift, ¥, leads to an incorrect
class-discriminative pose (i.e., a training pose misidentified
by a class-discriminative detector), the pose represented by
X, is considered a negative example for view-shift, .

The next stage extends discriminative pose learning to the
multi-label case. For each possible view-shift, ¢, each pose is
positive, negative, or neutral. Let X represent the subset of
training examples that are either positive or negative with
respect to view-shift, v. We apply the discriminative pose
learning algorithm from Section 3.1 to the set Xy for each
possible view-shift. The result is a set of shift-discriminant
poses. Figure 6 shows two examples, where the arrow shows
the relative shift associated with the keypose.

4. RECOGNITION ALGORITHMS

Previous work employing discriminative features most of-
ten considers hard cluster assignments where a particular
feature is discriminative or not. Viewed in a different light,
the set of local discriminative classifiers for a given class
serve to define a complex decision boundary in feature space
that could be used for soft assignment. Figure 7 depicts this



OOO
\O/ © © o © O
o ® ® )
u\o ¢ ® e 0

00 - A
( 7J ° 5 N\\° /
o © ° © X—, 0
°® o o o
29 o® N2 9/ o

(a) Hard assignment (b) Soft assignment
Figure 7: For hard assignments (a), the new pose
(black square) is not considered discriminative. For
soft assignments (b), the class posterior distribution
for the new pose is based on the distances to the
nearest discriminative clusters.

situation for a toy example in a 2D feature space.

These two viewpoints on pose classification directly inform
the two variants of our action recognition algorithm, which
we call exemplar recognition and sequential recognition. In
both cases, frames are processed by a single camera at a
time with no data buffering.

4.1 Exemplar Recognition

This version uses hard assignments. When a shift-
discriminative pose is observed, a view-shift is applied.
When a class-discriminative pose is observed, a prediction
is made, which ends processing for the sequence.

Algorithm 1: Exemplar Recognition

Input: Synchronized pose sequences, X'; discriminative
clusters, Cc, Cg; camera locations, {cm }
Output: Predicted label, g
1 a = index of active camera
2 Current time, ¢ < 1
3 while not yet classified do

4 g — ¢(CC7 xa,i)

5 if § # @ then

6 ‘ return 3

7 (Possible) view-shift: a + a + ¢(Cs, Xa,t)
8 t—t+1

4.2 Sequential Recognition

This version incorporates soft assignments based on the
class posteriors. Rather than making a prediction once a sin-
gle discriminative pose is observed, we incorporate the multi-
class sequential probability ratio test proposed by Davis and
Tyagi [2]. For a sequence of T observations, the ratio is de-
fined as:

P(y|xi.7)
rylxir) = =—F5 o ®3)
2y P/herr)
Class conditional probabilities, P(y|x1.7), are estimated us-
ing the Naive Bayes and uniform priors assumptions:

P(y|x1.r) = P(y|x1.7-1)P(y|C, xT) (4)
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A prediction is made when, for particular class, y, the ratio,
r, is greater than a pre-determined threshold. r(y|x1.7) > 1
indicates that the probability for a particular class is greater
than the sum of the other choices.

Algorithm 2: Sequential Recognition

Input: Synchronized pose sequences, X'; discriminative
clusters, Cc, Cg; camera locations, {c¢m }
Output: Predicted label, g
1 a = index of active camera
2 Current time, ¢t < 1
3 Initialize P(y|x0:0) to uniform distribution
4 while not yet classified do
Update P(y|x1:t) (Eq. 4)
if 3y, r(y'|x1:¢) > 7 then
| returny’
Update P(¥]x1:t) (Eq. 4)
if 37, 7(¥|x1.4) > 7 then
‘ view-shift: a < a + ¢(Cs,Xa,t)
t—t+1

_HO QWO W;

S. EXPERIMENTS

We evaluate our two algorithms, VSgxam (exemplar
recognition) and VSsgg (sequential recognition), on two
multi-view human action recognition datasets: i3DPost [4]
(8 actors, 10 actions) and INRIA Xmas Motion Acquisition
Sequences (IXMAS) [19] (10 actors, 11 actions).

View-shifting can be applied with any frame-based fea-
ture descriptor; we use the Motion Context descriptor [17],
which represents the distribution of occupancy and x— and
y— components of optic flow in a subject’s bounding box.
For discriminative cluster learning, we followed the guidance
in [16]. The cluster initialization threshold is 40% class la-
bel purity for k = 20 nearest neighbors. For cluster SVM,
the positive example threshold is -0.9. During training, each
discriminative SVM maintains between 2 and 5 positive ex-
amples. The detection thresholds, 7. and 75, are determined
using cross-validation.

5.1 Pose Discrimination

For dictionary learning, we compare discriminative clus-
tering to k-means (KM), commonly used for unsupervised
dictionary learning, and Submodular Dictionary Learning
(SDL) [7], a supervised dictionary learning method that op-
timizes cluster compactness, element similarity, and class
discriminativeness. For k-means and SDL, £ = 1000 and
the pose-level assignment is based on the majority class of
the cluster the pose is assigned. Using IXMAS, 7 actors were
used for training and 3 for testing. Table 1 shows the results
of the frame-level classification accuracy.

The EXM variant shows high precision and low recall since
poses from heterogeneous regions of feature space are ex-
cluded from training discriminative clusters, and, unlike the

Table 1: Precision and recall on ~13,000 labeled
frames from IXMAS.
EXM | SEQ | k-means | SDL
Precision | 0.92 | 0.49 0.40 0.35
Recall 0.09 | 0.47 0.45 0.40




Table 2: Recognition accuracy using discriminative
poses and various multi-camera prediction schemes.

Exemplar Sequential
SC | MC | VS SC | MC | VS
IXMAS | 0.69 | 0.67 | 0.77 || 0.69 | 0.84 | 0.83
i3DPost | 0.60 | 0.63 | 0.75 || 0.62 | 0.77 | 0.70
check watch

cross arms 0.
scratch head -
sit down 0.
stand up[-0.
turn around 0.
walk 0.

wave 0.

punch -

kick 0.

pickup 0.

Figure 8: Confusion matrix for V.Ssgpg on IXMAS for
early recognition. On average, actions were identi-
fied after observing 24% of the action.)

other methods, does not make a prediction for most input
poses. The SEQ method has higher recall and precision
than both k-means and SDL and the highest value for recall
among all the methods. Our approaches learn highly dis-
criminative features, which can be used to improve sequence-
scale classification.

5.2 View-Shifting

We implemented two baseline approaches to evaluate
view-shifting. The single-camera (SC) method operates
from a single viewpoint without view-shifting, and the
multi-camera (MC) method aggregates information from all
cameras. Both methods can be evaluated using the ex-
emplar (EXM) and sequential (SEQ) prediction schemes.
For MCEgxwm, a sequence is classified when the first class-
discriminative pose is observed in any camera. For M Csgq,
a single, combined posterior is calculated based on the ob-
served poses from all cameras; a sequence is classified based
on the ratio test described in Section 3.

We measured performance for each dataset following the
experimental protocols most commonly found in the litera-
ture. For IXMAS, this is leave-one-actor-out (LOAO) with
the results averaged across all the iterations. For i3DPost,
the first 5 actors are used for the training, and the last 3 for
testing. Table 2 shows the recognition accuracy.

For both datasets, the view-shifting methods out-perform
the single-camera baselines and give similar or better accu-
racy than the multi-camera approaches. This performance
comes at a fraction of the computational cost, since the VS
methods only process frames from a single camera at a time.
In the exemplar (hard assignment) scheme, the view-shift
approach outperforms both SC and MC by a wide margin.
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Figure 9: The box plots show the number of frames
observed for each action by V Ssgg prior to a predic-
tion during testing on IXMAS data.

Table 3: Early recognition accuracy and percent of
sequence observed on benchmark datasets.

IXMAS i3DPost
Acc. | % Seq. | Acc. | % Seq.
VSExm 0.77 0.21 0.75 0.25
VSskeqQ 0.83 0.24 0.70 0.27
SOSVM-SC 0.52 0.20 0.52 0.41
SOSVM-MC | 0.65 0.15 0.60 0.32

Across datasets and camera schemes, sequential variants
outperformed exemplar variants. The sequential approaches
accumulate evidence for a prediction over multiple frames
compared to the exemplar approaches. Figure 8 shows the
confusion matrix for V.Ssgg on IXMAS data. Many of the
actions are recognized at or near 100% (e.g., sit, turn, walk).
The wave action was confused with other similar-starting ac-
tions (e.g., check watch, cross arms, scratch head). Figure 9
shows the number of frames observed prior to classification.
In general, there does not appear to be a correlation between
accuracy and number of frames observed. For example, the
accuracy for the check watch and cross arms actions is sim-
ilar, but the number of frames observed varies significantly.

5.3 Early Action Recognition

We implemented an approach based on structured output
SVM (SOSVM), as described in [5]. For SOSVM, the frame-
level features are aggregated into histograms of quantized
words to represent video sequences. For each dataset, the
dictionary size, k, was selected to produce the best results,
k = 1100 for IXMAS and k = 500 for i3DPost. We trained
a separate detector for each class and adapted the classifiers
to the multi-camera setting. SOSVM-SC operates on single-
camera input, predicting the class of the first detector to fire
while observing a sequence. SOSVM-MC predicts the class
of the first detector to fire for any camera in the network.
Table 3 shows the recognition accuracy and average fraction
of frames observed for each of the experiments.

Both view-shifting approaches outperformed the SOSVM
detector. Across methods, the average fraction of the se-
quence observed was not a strong predictor of the final clas-
sification accuracy. However, for each method, a sequence
was more likely to be classified correctly when classification
was delayed. The plots in Figure 10 show precision and re-
call as a function of the fraction of the sequence observed
for each of the methods on IXMAS.



c
o
@
S 04 0 Vseq
& VSexm
0.2 SOSVM-SC
—B— sosvM-mC
5 L L L L L L I I J
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Fraction of action sequence
1
o8 00 O Ouuy
= 06
3
g 0 VSgeq
VSexm
SOSVM-SC
—B— sosvM-MmC
T

L L L L T
0.4 0.5 0.6 0.7 0.8 0.9 1
Fraction of action sequence

0.1 0.2 0.3

Figure 10: Precision and recall plots as a function
of the fraction of the action observed for early event
recognition on IXMAS.

6. CONCLUSIONS AND FUTURE WORK

This paper focused on the problem of early action recog-
nition in multi-camera networks. We proposed a discrimina-
tive keypose-based approach that achieved similar accuracy
to approaches using all cameras, while processing a single
camera at a time. Our method is applicable to a wide vari-
ety of image features and distributed camera network archi-
tectures. For the future, we plan to incorporate hierarchical
cascade models for additional computational savings. We
also plan to investigate transferability of learned pose mod-
els between different camera configurations.
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