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Abstract

For human action recognition methods, there is often
a trade-off between classification accuracy and computa-
tional efficiency. Methods that include 3D information from
multiple cameras are often computationally expensive and
not suitable for real-time application. 2D, frame-based
methods are generally more efficient, but suffer from lower
recognition accuracies. In this paper, we present a hybrid
keypose-based method that operates in a multi-camera en-
vironment, but uses only a single camera at a time. We
learn, for each keypose, the relative utility of a particular
viewpoint compared with switching to a different available
camera in the network for future classification. On a bench-
mark multi-camera action recognition dataset, our method
outperforms approaches that incorporate all available cam-
eras.

1. Introduction
Two significant challenges for human action recognition

from a single camera are the unknown relative pose between

the camera and person, and the inherent ambiguity of par-

ticular actions from certain viewpoints. Distributed camera

methods have addressed these challenges by incorporating

the information from multiple cameras; however, this data

integration introduces new concerns. Compared to single-

camera methods, additional cameras in the system, com-

bined with, e.g., 3D models or distributed computing, add

to the computational cost. This complexity often improves

recognition accuracy, but negatively impacts real-time per-

formance.

In this paper, we present an efficient multi-view action

recognition method designed for distributed camera net-

works. Rather than integrate the information from multi-

ple cameras simultaneously, our method only considers a

single camera at each time step, taking advantage of the ef-

ficiency of single-camera recognition. The top row of Fig-

ure 1 shows a person in a scene captured in a multi-camera

network. From the left viewpoint, the pose is ambiguous.

Figure 1. Two frames of the same action captured from multiple

cameras. This paper presents an action recognition method that

learns if a pose represents a potential future ambiguity (left) and

which available viewpoint will facilitate disambiguation (right).

However, the right viewpoint represents a discriminative

keypose; this image is likely part of a sequence of a per-

son waving. Previous methods [8] take advantage of the

observation that certain poses are unique to particular ac-

tion classes. This work focuses on the observation that, in

addition to poses that are discriminative for action classifi-

cation, certain poses indicate potential future classification

ambiguity and can provide information for a view-shift to a

different camera in the network. In Figure 1, the pose on

the left represents such a case.

Our method frames view-shift learning as a Markov de-

cision process and employs reinforcement learning to esti-

mate the utility of the available viewpoints in a distributed

camera network for human action recognition. Our ap-

proach does not require the camera configuration to be the

same in training and testing, and, by using a frame-based

classification scheme, is applicable to variants of the prob-

lem of action recognition, such as early event detection. We

compare recognition results of our view-shift method with

recent traditional multi-camera approaches and show that

our method is comparable to the state of the art on a stan-

dard benchmark dataset in terms of recognition accuracy,

but with greatly reduced computational effort.



2. Related Work

For multi-view action recognition, many authors

(e.g., [14]), distinguish between methods that explicitly

build 3D models (e.g., [13, 12]), and methods that may in-

corporate multiple 2D views, but do not build 3D models.

Some of these methods explicitly estimate the viewpoint

from which an image was captured (e.g., [10, 6]) and other

work follows the approach of designing view-invariant fea-

tures (e.g., [1, 9]). Our approach is most related to these 2D

approaches, but we do not learn to distinguish viewpoints

nor rely on view-invariant features. Our method instead

predicts if another viewpoint would be advantageous and

is agnostic to base feature representation.

In terms of methodology, our approach extracts features

frame-wise, rather than across an “action length” video clip.

Typically, frame-wise approaches involve quantizing frame-

level feature descriptors; a variety of approaches have been

proposed. Most similar to our method is the work of Tran

and Sorokin [11], who proposed a single-camera classifier

using a sequence of quantized keyposes and Naive Bayes

classification. Similarly, other methods [16, 3] also weight

quantized poses (obtained via supervised or unsupervised

methods) by discriminative power and apply an aggrega-

tion scheme for action recognition. There are also multi-

view extensions that combine camera predictions using vot-

ing [7].

The idea of using information from one view to inform

view selection can also be found in the area of active vi-

sion [5], usually in the context of a mobile agent. For ex-

ample, in [2], agents perform object recognition using en-

tropy maps, which model the predicted suitability of poten-

tial viewpoints to help determine the object. In robotics, this

is commonly called the next best view (NBV) problem [4].

The active vision paradigm is not generally applicable to

action recognition since the environment or objects of inter-

est are usually static and the time to compute or decide on a

view-shift is not a factor, unlike in action recognition.

In Section 3, we describe our classification approach,

which uses reinforcement learning to estimate which key-

poses indicate a potentially ambiguous classification and

how best to view-shift. Our method is applicable to a vari-

ety of feature transforms used in action recognition, and in

Section 4, we show the high recognition rates of our method

on a benchmark dataset.

3. Approach

For training, the input is a set of quantized feature repre-

sentation (or keypose) sequences, S = {Si} captured from

nC different camera viewpoints. Si = 〈si,1, si,2, . . . , si,m〉
is an m-length sequence of keyposes from the set X =
{xj}. Each sequence, Si, is associated with class label,

yi ∈ [1, nL], where nL is the number of class labels. Similar

Figure 2. The relative positions of the cameras in a distributed net-

work can be discretized in terms of azimuth and elevation on a

half-sphere centered on a target. By considering relative view-

shifts, our method can learn the utility of view-shifts to viewpoints

unseen during training, allowing for flexibility in camera network

configuration.

to [11], we compute the posterior probabilities, P (y | Si),
using a frame-wise approach with the Naive Bayes and uni-

form priors assumptions:

P (y | Si) ∝
∑
t

logP (si,t | y). (1)

For single-camera action recognition, the final prediction

for sequence, Si, is the class label, ŷ, that maximizes the

posterior probability:

ŷ = argmax
y′

∑
t

logP (si,t | y′) (2)

The model for single-camera recognition provides the

framework for our multi-view extension with view-shifting.

To describe our approach, we first describe our multi-view

model and how view-shifts can be learned.

3.1. Multi-View Model

Our method is designed for a network of multiple cali-

brated cameras. For a given target, the positions of the cam-

eras can be described by a discretized half-sphere centered

on the target, indexed by the azimuth and elevation, as de-

picted in Figure 2. We define a view-shift as a change of

viewpoint based on a relative offset. The possible view-

shifts are determined by the physical location of the cam-

eras relative to the target. To facilitate learning, the half-

sphere and, hence, view-shifts, are discretized into a fixed

number of azimuth and elevation offsets. Let �v represent a

view-shift in (cyclic) azimuth and elevation. The view-shift,

�v0 = 〈0, 0〉, represents maintaining the current view.
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Figure 3. Examples of frames captured from different views and

the class probability distributions for each frame with the correct

class highlighted in green. In our reinforcement learning method,

The frames boxed in green would trigger a positive reward and the

red-boxed frames would trigger a negative reward.

3.1.1 Learning View-shifts

Consider the sequence of frames for a particular action.

Given an observation (i.e., keypose), at each timestep, the

primary view can be shifted to another available view. Our

goal is to learn the best view-shift (including maintaining

the same view) for each keypose. View-shift learning can

be framed as a Markov decision process where the goal is

correct action sequence classification. We apply reinforce-

ment learning, specifically Q-learning, to learn the state-

action value function, Q(x,�v), which encodes the value of

applying view-shift, �v, after observing keypose x. The Q-

learning algorithm iteratively approximates Q(x,�v) based

on samples taken from training sequences.

Q(x,�v)←(1− η)Q(x,�v)+

η

[
r(x′, �v, y∗) + γmax

�v′
Q(x′, �v′)

]
(3)

where η is the learning rate, r is the immediate reward func-

tion, x′ is the keypose observed after view-shift �v, and y∗ is

the correct label for training sample. Reward allocation is

designed to be proportional to the discriminative power of

the next keypose in the sequence with a small penalty for

view-shifting. We allocate rewards as follows:

r(x,�v, y∗) = Ψ(�v) +

⎧⎨
⎩
1 if argmax

y′
P (x | y′) = y∗

−1 otherwise

(4)

where the view-shift penalty, Ψ(�v) = −0.1 if �v �= 〈0, 0〉.
So, we provide a positive reward when the most likely class

for the keypose, given by the distribution, P (x | y′), is the

correct class, y∗, and a negative reward otherwise (i.e., the

frame is misclassifed). In the next section, we describe the

details of the algorithms for training and applying our view-

shift recognition method.

3.2. Algorithm

In this section, we describe the design decisions and

algorithm details for our method. Our frame-wise ap-

proach leverages the discriminative power of individual

keyposes, encoded by the independent probability distribu-

tions, P (x | y), which are computed from the training data

using Laplace smoothing:

P (x | y) = nK + 1

nA + |X| (5)

where nK is the number of instances in the training data

where keypose x occurs in sequences with label y, nA is

the total number of training frames with class label y, and

|X| is the number of distinct keyposes. Figure 3 shows ex-

amples of two frames captured from different views and the

class probability distributions, P (x | y), for each frame

with the correct class highlighted in green. Based on the

scoring scheme, in both cases, the pose on the right (boxed

in green) represents a positive reward and that on the left

(boxed in red) represents a negative reward. The view-shift

training algorithm is summarized below:

1. For each training frame, extract and quantize features

for keypose representation.

2. For each keypose, calculate frame conditional proba-

bilities (Equation 5).

3. Initialize Q(x,�v) for all keyposes and view-shifts.

4. Repeat until convergence

(a) Randomly select a training action sequence Si

(with associated view, Ci).

(b) For each keypose, x = si,t, in the sequence

i. For each available view-shift, compute re-

ward (Equation 4).

ii. Update Q using Equation 3.

The result of this training process is the state-action value

function, Q(x,�v), which represents the value of each view-

shift on the half-sphere for each keypose in the dictionary.

A test sequence consists of single-camera input with po-

tential alternative viewpoints for view-shifts. We modify

the single-camera Naive Bayes classifier for view-shifting

recognition as follows:

1. Repeat until classification criterion is met

2. Extract and quantize features for keypose representa-

tion.

3. Update classification posteriors (Equation 2).

4. Look up the values, Q(x, �v′), for each available view-

shift, �v′.
5. Switch to the camera corresponding to the maximum-

value view-shift.

For real-time action recognition, there are many pos-

sibilities for reporting a prediction, including time- or

confidence-based classification. In the next section, we

show results for a variety of classification criteria.



Figure 4. Each row shows frames co-clustered after unsupervised

dictionary learning. (Top) The cluster is mostly homogeneous;

most of the frames are examples of waving. (Bottom) The cluster

is heterogeneous. From left to right, the actions are pick-up, kick,

punch, and check watch.

4. Results

We evaluate our approach using the INRIA Xmas Mo-

tion Acquisition Sequences (IXMAS) dataset [13], a stan-

dard benchmark for multi-view action recognition, which

contains multiple actors performing various actions, cap-

tured by five synchronized, calibrated cameras. The posi-

tion and orientation (relative to the cameras) of the IXMAS

actors are not prescribed, so the relative pose of an actor is

not a function of which camera is recording the action se-

quence. All of the methods described in this section were

implemented in Matlab on a standard PC. Our approach can

be applied to any frame-based feature descriptor; our exper-

iments use the Motion Context [11] descriptor, which repre-

sents the distribution of occupancy and x− and y− compo-

nents of optic flow in a bounding box surrounding the object

of interest combined with a low-dimensional projection of

the feature vectors for neighboring frames.

Keypose Learning To build the dictionary of keyposes,

the feature descriptors for every fourth frame in the training

data were clustered via the k-means algorithm. For these

experiments, k was set to 150 clusters per class. We initial-

ized k-means 5 times and selected the cluster assignment

with minimum energy, as measured by average intra-class

similarity. Figure 4 shows example frames from two clus-

ters. The first row depicts a cluster that is mainly homo-

geneous; most of the frames are examples of waving. The

second row shows the more common case of a pose shared

among multiple classes.

View-shift Learning IXMAS consists of five cameras.

Four of the cameras are at similar elevations, and one is

Azimuth 

Elevation 

Figure 5. For the 5-camera IXMAS dataset, this diagram shows

the locations of each the camera (red circles) when the view half-

sphere is discretized into 10 azimuth and 2 elevation bins. The

arrows represent a viewshift; both arrows indicate the same view-

shift: 〈+3,−1〉. Relative view-shifts allow our method to learn

the utility of view-shifts to viewpoints unavailable during training.

Figure 6. In this punching sequence, the pose in the third frame,

outlined in green, is ambiguous and represents potential future

confusion from this viewpoint. The ambiguous pose triggers a

learned view-shift. The final two frames, viewed from the shifted

camera, are highly discriminative for this action.

nearly overhead. For this configuration, we discretize the

view-sphere into two bins for elevation and 10 for azimuth,

as shown in Figure 5. This results in 30 possible viewshifts:

10 for clockwise shifts in azimuth, and 3 for elevation (+1,

0, -1). For the experiments described in the next section, the

number of keyposes (i.e., dictionary size) is ∼1500. There-

fore, the state-action value table has ∼50k entries. For Q-

learning, the free parameters were determined empirically.

The discount factor, γ, is 0.5, and the learning rate, η, is ini-

tially 1.0 with a decay rate of .997. In addition to the reward

allocation scheme represented in Equation 4, we evaluated

other schemes, including rewards proportional to the key-

pose classification margin or based on logistic regression;

in general, the selected scheme performed at least as well as

these alternatives. Training terminates when 10 successive

entries are updated by less than 10−5. Training for a typi-

cal experiment using IXMAS data with the motion context

feature requires ∼5000 iterations to converge, which takes

∼30 seconds on a standard PC. Figure 6 shows an example

of a view-shift learned by this method. For this sequence,

the pose represented by the third frame (outlined in green)

induces a view-shift to a camera with views more discrimi-

native for the anticipated ambiguity.

4.1. Experiments

We apply our method to a few variants of the action

recognition problem and demonstrate the robustness of our

method to different camera configurations in training com-

pared to the testing environment. We refer to our view-shift

action recognition method as vs and compare to alternative

frame-based multi-view classification schemes that use the



Method type Accuracy

vs single 94.24%

vote multi 93.33%

sc single 86.06%

wvote multi 83.33%

Liu et al. [7] multi 93.7%

Wu et al. [15] multi 88.2%

Zhu et al. [17] multi 88.0%
Table 1. Multi-view classification rates on the IXMAS data set.

The method type refers to the number of simultaneous views.

(Top) Rates for our approach, vs, and variants. (Bottom) Repre-

sentative 2D multi-view recognition rates reported in the literature.

same features and aggregation methods:

• The single-camera (sc) method is our implementation

of an algorithm described in [11], which uses Naive

Bayes classification on a sequence of frames without

view-shifting.

• The multi-camera voting (vote) method applies a

common multi-view aggregation technique where the

majority decision serves as the final classification.

• The weighted multi-camera voting (wvote) extends

(vote) by weighting each vote by the normalized pos-

teriors returned by the classifier.

Action Recognition The first experiment is the most

common action recognition task: classification on video

sequences of prescribed length. We followed the experi-

mental protocol most commonly found in the literature for

this dataset (e.g., [13, 17, 7]), which uses 10 actors, each

performing one of 11 actions three times and is evaluated

with a leave-one-actor-out cross validation strategy. Ta-

ble 1 shows the overall accuracy of each of the methods and

also a comparison to other recent 2D multi-view recogni-

tion methods on this dataset. Our view-shift method, (vs),

achieves an accuracy of 94.24%, which, to the best of our

knowledge, is the highest accuracy achieved on this dataset

among 2D multi-view methods. Compared to vote and the

top-performing methods from the literature ([7, 17]), our

approach not only achieves higher accuracy, but is more ef-

ficient (22 fps compared to 4.5 fps) since, per target, pro-

cessing occurs on only a single view per time step. The

wvote method performed worse than the single-camera

method, possibly due to the unreliability of Naive Bayes

posterior probabilities as estimators.

Figure 7 shows the confusion matrix for our method,

vs, for this classification experiment on the IXMAS data

set. Each row represents the actual class and each column

represents the predicted class. For many actions (e.g., sit,

stand, walk, kick, pickup), accuracy is 100%. The most

challenging case involves confusion between waving and

scratching head. This is reasonable as the base features
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Figure 7. Confusion matrix for the proposed view-shift method on

the IXMAS dataset.

are mainly silhouette-based and these actions include self-

occlusion from most views.

Early Recognition In this variant of action recognition,

the task is to classify the action prior to the end of the se-

quence. Previous work (e.g., [8]) has included the observa-

tion that many action sequences can be identified with snip-

pets of only a few frames. Our view-shift method is frame-

based and capable of early classification without modifica-

tion. For this experiment, we classified only the first por-

tion of an action sequence for various lengths from 10%

to 100%. Figure 8 shows the results for our method and

the representative single- and multi-view methods. As ex-

pected, the classification accuracy of all methods increase

as a greater portion of each sequence is observed. As with

the experiment with the full sequences, our method achieves

comparable performance to the method that incorporates all

views simultaneously. For sequences comprising just the

first 40% of the available frames, the view-shift method ac-

curacy is 85%, which is competitive with recent methods

that observe the entire sequence and utilize all the cameras

simultaneously (as reported in Table 1).

Camera Network Configuration The previous experi-

ments operate under the assumption that the configurations

of the training and testing environments are the same. In

a real-world setting, this may not be the case. Our method

learns relative view-shifts, rather than a model specific to

a particular camera network, and can be applied to cam-

era configurations not used in training. We perform experi-

ments using various combinations of the cameras in the IX-

MAS dataset for training and testing. Table 2 shows results

for an experiment where four of five cameras were used in

training, and all five cameras were used for testing. For

single-camera recognition (sc), accuracy drops by an av-

erage of 12% when recognizing sequences that include a
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Training Views sc vote vs
2 3 4 5 77.70% 91.52% 92.00%

1 3 4 5 74.79% 91.82% 92.12%

1 2 4 5 76.06% 90.61% 91.70%

1 2 3 5 75.52% 92.12% 91.94%

1 2 3 4 74.36% 90.61% 91.09%

Average 75.69% 91.34% 91.77%
Table 2. Classification accuracy on the IXMAS dataset with vari-

ous camera combinations. The left column shows which cameras

were used for training.

camera unseen during training. By contrast, with the view-

shift method, vs, recognition accuracy does not signifi-

cantly drop when the test environment contains a viewpoint

unseen in training. As before, our method achieves simi-

lar performance to the more computationally expensive ap-

proach, vote, which uses multiple views simultaneously.

Additionally, we perform an experiment using fewer cam-

eras in testing compared to training. We train the method

using all five cameras, and perform recognition using a sub-

set of these views. Averaging the results over all the per-

mutations of cameras, our method, vs, achieves 91.93%,

90.66%, 90.33% for four, three, and two cameras, respec-

tively. As the number of cameras in the test environment de-

creases, the accuracy of our method decreases only slightly.

While these experiments do not replicate disparate camera

networks, they provide evidence that relative view-shifts are

not tied to specific camera configurations.

5. Conclusions and Future Work
In this paper, we presented a new approach to multi-

camera action recognition that makes use of only a sin-

gle active camera at a time, resulting in computational ef-

ficiency, while achieving results equal to or slightly bet-

ter than methods that incorporate multiple views simulta-

neously. In the future, we plan to deploy the method on a

distributed camera network in a real-world setting for real-

time action recognition. We will evaluate feature represen-

tations best-suited to real-time performance and consider re-

ward allocation schemes in our learning apporach that more

closely correspond to the (potentially variable) real-world

costs of dynamic camera selection.
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