
Dynamic Subset Selection for Multi-Camera Tracking

Scott Spurlock
UNC Charlotte

9201 University City Blvd.
Charlotte, NC 28223

sspurloc@uncc.edu

Richard Souvenir
UNC Charlotte

9201 University City Blvd.
Charlotte, NC 28223

souvenir@uncc.edu

ABSTRACT
While multi-camera methods for object tracking tend to out-
perform their single-camera counterparts, the data aggrega-
tion schemes can introduce new challenges, such as resource
management and algorithm complexity. We present a frame-
work for dynamically choosing the best subset of available
cameras for tracking in real-time, which reduces aggregate
tracking error and resource consumption and can be applied
to a variety of existing base tracking models. We demon-
strate on challenging video sequences of players in a basket-
ball game. Our method is able to successfully track targets
entering and exiting camera views and through occlusions,
and overcome instances of single-view tracking drift.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing—Video analysis; I.4.8 [Image Processing and
Computer Vision]: Scene Analysis—Tracking

General Terms
Algorithms, Experimentation

1. INTRODUCTION
Accurately tracking people in video enables applications

in surveillance, traffic monitoring, and video conferencing.
Recent multi-camera methods have helped to overcome some
of the issues associated with object tracking, such as drift
and occlusion, that arise in the single-camera case. However,
the integration of multiple cameras introduces new chal-
lenges in terms of resource consumption (e.g., power, com-
puting, and networking), and algorithm complexity. More-
over, while tracking accuracy tends to increase with the
number of cameras, the potential also increases for poor
measurements from individual cameras to negatively affect
aggregate tracking estimates.

In this paper, we present a framework for balancing the
computational efficiency of single-camera tracking with the
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power of a distributed camera network by dynamically se-
lecting the best subset of cameras for tracking. This method
allows for more efficient use of network and computing re-
sources, and can scale to reduce error with the allocation of
additional cameras depending on the desired trade-off be-
tween performance and accuracy. In Section 2, we review
related work, and our base tracking model is described in
Section 3. In Section 4, we present our multi-camera co-
ordination scheme. Results on a complicated dataset are
described in Section 5, and we conclude in Section 6.

2. RELATED WORK
Recently developed multi-camera approaches have an im-

proved ability to mitigate mistracking due to occlusion be-
cause of the increased likelihood of an available, unoccluded
view of the target [16]. Multi-camera methods tend to be
one of two types: measurement correspondence approaches,
where features are warped into a common view prior to state
estimation, or trajectory correspondence approaches, where
state estimates are computed independently in each view
before being integrated [15].

Many measurement correspondence approaches make use
of plane-to-plane transformations to warp detected objects
from multiple camera views to an occupancy map in a ref-
erence plane, typically the ground plane [11]. Occlusions of
the targets’ feet and shadows mistakenly classified as fore-
ground can create problems for methods that use the ground
as a reference plane. More recent approaches [12, 5] address
these issues by finding the ground plane occupancy using
homographies to planes above and parallel to the ground
plane. Most of these approaches focus on occupancy rather
than using template-based object tracking. This can lead to
difficulty in disambiguating nearby targets or discriminitive
tracking in crowds. In [7], ground plane foreground occu-
pancy masks are combined with color and motion models,
which helps to address these issues.

Compared to measurement correspondence approaches,
trajectory corresponce approaches tend to be less resource-
intensive and more conducive to distributed processing. One
of the early methods [2] used single-camera tracking until the
system predicted the camera would no longer have a good
view of the target and leveraged epipolar geometry to select
a nearby camera to take over tracking. This method differs
from ours in that our framework seeks to find the optimal
subset of cameras to track the target in every frame, rather
than simply switching to a different, single camera when nec-
essary. More recent methods have attempted to incorporate
the tracking information from all of the cameras in the net-



work. In [14], particle filtering with color-based detection is
used to track a target independently in each camera. Their
system also uses epipolar geometry to reinitialize a poorly
tracking camera from a higher-scoring neighbor. In [17],
single-camera detection is used to estimate the 3D target
location and these estimates are combined using the Ex-
tended Kalman Filter. These methods differ from our pro-
posed framework in that they aggregate information from all
available cameras rather than the best subset. In [10], util-
ity functions are defined that model which pair of cameras
provides the optimal view of each physical location in the
environment. However, the focus is on coverage of physical
locations rather than the best view of a particular target,
which can lead to problems with multiple occluding targets.

Several hybrid methods have also been proposed that com-
bine the measurement and trajectory correspondence ap-
proaches. For example, one method integrates particle filter
results from each camera and the ground plane in both the
detection and prediction stages by making use of “princi-
pal axes” to find reliable target intersection at the ground
plane [6]. Han et al. assign a particle filter to each camera
and vary the number of particles and relative contribution
from each camera using a Gaussian mixture model weighted
based on sensor reliability [8]. These hybrid approaches re-
port excellent tracking results; however, like measurement
corresponce methods, these come at the price of increased
computational and algorithmic complexity.

Our hybrid approach, which is more similar to the tra-
jectory correspondence methods, allows for dynamic camera
switching at each timestep and tracking from an arbitrary
number of cameras at once. Cases such as targets enter-
ing or leaving a camera view, target occlusion, and drift
are handled automatically as the framework selects the best
cameras to track actively at any given time based on a novel
voting and ranking scheme.

3. TRACKING MODEL
In our framework, each camera performs 2D object track-

ing independently. We chose to implement a particle filter-
based tracker, but any number of other tracking methods
could have been selected.

3.1 Object Model
Objects are represented as a weighted distribution, q, of

color values of the pixels in image patch Jy,t = {y′ ∈
I | y′ is bounded by y ± 〈w, h〉}, where h and w are the
half-height and half-width of the bounding box centered at
position y, I is the image, and t is the frame number. The
distribution, q, is over a quantized RGB color space. In our
experiments, we use 16 bins per color channel, which results
in a histogram of dimensionality 16× 16× 16 = 4096. Each
pixel location, y′, is weighted based on:

• Kernel Function: Pixels closest to the center of the
image patch, y are weighed more heavily than pixels
at the edge using the Epanechnikov kernel [3]:

k(y,y′) = max

[
0,

3

4

(
1−

∣∣∣∣∣∣∣∣ y − y′

〈2w, 2h〉

∣∣∣∣∣∣∣∣2
)]

(1)

• Foreground Likelihood: Pixels are additionally weighted
on the likelihood of belonging to the foreground model.
Let B(y′) be the background model, represented as a

pixel-wise Gaussian distribution with a mean equal to
the mode at location y′ in the video sequence, and
standard deviation equal to the expected image noise.
The foreground likelihood, φ, is:

φ(y′) = 1− P
[
B(y′) = I(y′)

]
The resulting kernel is calculated as κ(y,y′) = k(y,y′)φ(y′).

We define a function u = f(y′) that maps each pixel from
the target image patch into a discrete bin u based on the
pixel’s location in RGB color space. Taking these elements
together, the probability of each feature u = 1...m in the
model for the target centered at location y within the image
patch Jy,t is given by:

qu(y) = C
∑

y′∈Jy,t

κ
(
y,y′

)
δ[f(y′)− u] (2)

where δ is the Kronecker delta function, and C is a normal-
ization factor.

3.2 Reference Plane Transform
Each camera tracks objects using the coordinate system

in a global reference plane. For a calibrated camera, pro-
jection matrix P converts a 3D point X = (X,Y, Z,W )T to
a 2D image location y = (x, y, w)T as y = PX, where y
and X are expressed as homogeneous coordinates. Denot-
ing the jth column of P as pj , we can derive a homogra-
phy, Href =

[
p1 p2 p4 + Zrefp3

]
, which maps points

on the image plane to a plane Zref units above the ground
plane along the vertical axis where Zref is expressed in world
coordinates [4]. Ground-plane homographies (Zref = 0) are
commonly used (e.g. [11, 7]); however, it has been shown
that reference planes above the ground plane can improve
tracking accuracy [5]. In our model, we choose Zref to be
half the approximate height of a target. Figure 1(a) illus-
trates the reference plane used for tracking. Given projec-
tion matrix P and the free parameter Zref , we define the
transform, τ , from reference coordinates, x, to image coor-
dinates y:

τ (x, P ) = (Href )−1x. (3)

Dynamic Target Resizing.
We additionally use the reference plane coordinates to

resize the target bounding box dynamically during track-
ing. Figure 1 illustrates this process for two video frames
of the same target. Given reference plane coordinates x =
(x, y), we project the 3D points representing the bottom and
top of the target,

[
x y 0 1

]
and

[
x y Zt 1

]
, re-

spectively, to image coordinates using projection matrix P ,
where Zt is the approximate height of the target. The dif-
ference gives us the height of the bounding box, in image
pixels, and we assume the width to be 1

3
of this value.

3.3 Particle Filter Tracking
A particle filter [1] estimates a nonparametric posterior

distribution of the target object’s state represented as a set
of particles. We denote the jth particle at time t as

s
(j)
t =

[
x ẋ

]
(4)

where x and ẋ are the position and velocity, respectively, of
the target. At time t = 0, the positions of the initial set
of particles are manually initialized to the starting location



Figure 1: Targets are tracked in a reference plane parallel to and Zref units above the ground plane. To dynamically resize
the bounding box for detection, the 3D points representing the top and bottom of the target are projected onto the image
plane. The images in (b) and (c) show the automatically calculated bounding boxes for the same target at different times.

of the object. In the case where initial velocity estimates
are not provided, we randomly sample the velocity from a
2D, zero-mean, Gaussian distribution where the covariance
is set to be the average velocity of object motion. After ob-
ject template initialization, we iterate through prediction,
detection, and resampling at each timestep for online track-
ing.

Prediction.
For each particle s

(j)
t−1 we predict the new state at time t:

x
(j)
t = x

(j)
t−1 + ẋ

(j)
t

ẋ
(j)
t = ẋ

(j)
t−1 + ξ

where ξ is a noise term.

Detection.
To match two m-dimensional image patch histograms, q

and p, for similarity, we employ the Bhattacharyya coeffi-
cient [9], a measure of similarity between two distributions:

β(q, p) =

m∑
u=1

√
qupu (5)

Equation 5 is used to calculate the probability, ρ(q, s, P )

that the state represented by a given particle, s
(j)
t , coincides

with the reference template, qT . The position, in reference

coordinates, x
(j)
t , is converted to image coordinates using

camera projection matrix, P and Equation 3, and the can-
didate object distribution q′ is calculated using Equation 2.
The detection score, ρ, is given as:

ρ(qT , s, P ) = β
(
qT , q

′) (6)

For the set of particles st, the detection scores ρ are nor-
malized to give a non-parametric distribution of the target’s
state. The state of the object ŝt at time t is the maximum
likelihood estimate (MLE) of this posterior distribution. To
continue tracking, the particles are resampled from this dis-
tribution to generate the set of particles for time t+ 1. The
prediction and detection steps iterate on the next frame.

4. CAMERA COORDINATION MODEL
In the standard prediction-detection paradigm for object

tracking, computation is typically dominated by the de-
tection step, when many image locations are compared to

the target’s template. In this section, we describe our co-
ordination model for multi-camera object tracking, which
overcomes some of the issues associated with single-camera
tracking, such as drift and occlusion, and also reduces overall
computation by minimizing the aggregate number of detec-
tion processes needed in the complete system.

Let C = {1, 2, . . . , N} be the set of identifiers for N cam-
eras in a multi-camera network. We partition C into three
subsets: active (CA), passive (CP ), and inactive (CI) cam-
eras. Active cameras track, as described in Section 3. Pas-
sive cameras are available, but are not actively tracking,
and inactive cameras either do not contain the target within
the field of view or are otherwise disabled (e.g., power sav-
ing). Our meta-algorithm for camera coordination iterates
through tracking and reassignment steps.

Tracking.
At time step t, for each active camera i ∈ CA, we obtain

the state estimate s
(i)
t =

[
x(i) ẋ(i)

]
and detection score,

ρ̂(i), for the target. Each camera j ∈ (CA ∪ CP ) evaluates

the target state estimates, {ŝ(i)t }, identified by the active

cameras and returns detection scores ρ
(i)
j . In the case of

multiple active cameras (|CA| > 1), we determine an ag-
gregate state estimate using a simple voting scheme. Each
camera, j, selects the state estimate from active camera i

with the highest value of ρ
(i)
j . The state estimate with the

highest number of votes is selected as the network’s estimate
for time step t. This voting approach differs from previous
multi-camera methods [14, 13] that directly compare detec-
tion scores across cameras.

Reassignment.
After tracking in frame t, cameras are reassigned to the

active, passive, or inactive sets for frame t + 1. Cameras
whose state estimate indicates the object is out of the field
of view or are otherwise disabled are labeled as inactive.
Using a preference function, we rank the remaining cam-
eras. This function could incorporate multiple factors, such
as power remaining, long-term camera reliability, or priors
from an environment model. In our experiments, we eval-
uate two preference functions. The first uses the detection
scores as direct measures of tracking confidence. The sec-
ond approach relies on the relative change in detection score.
Due to differing color calibration, the size of the target in
the frame, or occlusions in the scene, raw detection scores



Figure 2: Frames from the 7 cameras in the APIDIS dataset.

Number of Target Occlusion
Scenario Frames Acceleration Severity

1 420 Medium Medium
2 200 Low High
3 250 High Low

Table 1: Description of the three test scenarios.

may not be meaningful between cameras. As an alterna-
tive, we also evaluated the relative change in detection score,
(ρt−ρt−1)/ρt−1, as a preference function. Based on the pref-
erence function, the top T cameras become active, and the
remaining are passive.

We iterate through these two steps, tracking and reas-
signment, for each frame of the video. In the tracking step,
the computation savings arise for inactive and passive cam-
eras. Rather than evaluating a large number of locations in
the detection step (typically hundreds using particle filters),
only a few locations (those returned by the active cameras)
need to be evaluated. This savings would be realized not
only for particle filter tracking, but for any tracker using the
prediction-detection model. In the next section, we show
how this coordination method improves tracking on a chal-
lenging data set.

5. RESULTS
To test our method, we used the APIDIS dataset1, which

consists of footage from a basketball game recorded by seven
calibrated, pseudo-synchronized, color cameras from various
angles (Figure 2). This sequence includes 12 moving ob-
jects (10 players plus 2 referees) with uniforms similar in
appearance to each other and the court, as well as challeng-
ing shadows and reflections. Ground truth image positions
are included for each moving object in each camera at each
time step for error calculation. To evaluate our method, we
selected three tracking scenarios (summarized in Table 1),
which contain a mix of sudden target acceleration, difficult
occlusions across multiple cameras, and instances of the tar-
get exiting the view of one camera and entering another.

Single-Camera Tracking.
As a baseline, we performed single-camera tracking (as de-

scribed in Section 3) using 200 particles per camera for track-

1http://www.apidis.org/

ing. The error metric is the distance on the reference plane
from the target’s estimated position to the ground truth po-
sition. Figure 3 (a) shows the mean tracking error for three
different cameras. (Only cameras 2, 3, and 5 contain a view
of the target for the duration of the tracking experiment.)
The units correspond to a predefined coordinate system; 15
units equates to mistracking the target by one foot in real-
world units. The high error values (i.e., mean error greater
than 50) usually indicate the tracker became “lost” and the
target was completely mistracked. For scenarios 1 and 3, the
best-performing individual cameras (3 and 5, respectively)
were able to track the target successfully. So, even in cases
of high target acceleration or moderate occlusion, the base
tracker can perform well. However, for scenario 2, no indi-
vidual camera was able to successfully track the target due
to an occlusion with multiple players in the same area.

Coordinated Tracking.
We tested our multi-camera coordinated model using up

to four active cameras.2 For reassignment, we evaluated the
two strategies described in Section 4, which we call Score
and RelScore. As with the single-camera experiments, each
active camera used 200 particles for tracking. Figure 3 (b)
shows the mean error for each coordination scheme over the
same three scenarios from the APIDIS data. Both multi-
camera approaches outperformed the individual cameras.

The first method, Score, which uses the raw detection
scores as the preference function performs poorly in the case
of a single active camera (T = 1), where the target is mis-
tracked in 2 of the scenarios. This method is particularly
vulnerable to a single high-scoring camera dominating the
rankings. This effect appears to be mitigated at T = 2, even
though the target is still mistracked in Scenario 2. With
T ≥ 3, the target in each scenario is successfully tracked,
however with higher error rates than the RelScore approach.
The second multi-camera method, RelScore, performed the
best out of the three tracking methods. Even with a sin-
gle active camera (T = 1), the method is able successfully
track the target in all three scenarios, and error generally
decreases as successive cameras are added. Over all the ex-
periments, the RelScore scheme achieved a mean error of
15.07, compared to 53.73 and 211.55 for the Score and single-
camera methods, respectively. Figure 4 illustrates how the
system switches among cameras with T = 2 active cameras
over scenario 2. Figures 5 and 6 show our method handling
situations of mistracking and occlusion, respectively.

Computational Load.
To measure the computational load of our approach, we

focus on what is typically the most computationally expen-
sive step in tracking, evaluating a candidate location. In
particle filter tracking, this step occurs once for each par-
ticle in each frame. In our approach, the number of eval-
uations is reduced, as only active cameras evaluate all of
the particles, and non-active cameras perform just T eval-
uations, where T is the number of active cameras. For the
multi-camera case with a single active camera (T = 1) and
200 particles for tracking, 206 detections are carried out per
frame, a reduction of 85% of the computational effort com-
pared to when all the cameras track independently, which is

2Even though the network contains seven cameras, a single
object often does not appear in more than four camera views.



18.8 

40.73 

24.37 

0

10

20

30

40

50

60

Er
ro

r 

 
 
 

Camera 2 Camera 3 Camera 5

853.36 362.84 170.89 853.36 191.49 150.97 

Scenario 1 Scenario 2 Scenario 3 

(a) Single-camera Error

49.6 

17.81 17.52 

15.39 16.11 

13.33 

15.88 

21.36 

14.35 

18.46 

12.76 

28.08 

17.71 

23.63 

13.47 

16.74 

12.75 

30.95 

16.67 

21.79 

13.27 

0

10

20

30

40

50

60

Score RelScore Score RelScore Score RelScore
Er

ro
r 

 
 
 

T=1 T=2 T=3 T=4

215.13 142.69 

Scenario 1 Scenario 2 Scenario 3 

60.24 

(b) Multi-camera Error

Figure 3: Mean error for (a) single-camera and (b) coordinated multi-camera tracking. Error units correspond to a predefined
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Figure 4: This timeline depicts the state of each camera for
tracking an object using T = 2 active cameras.

the approach taken with typical trajectory correspondance
tracking methods. While adding active cameras increases
the computational load, this number can be selected to bal-
ance the tradeoff between efficiency and tracking accuracy.

6. CONCLUSIONS AND FUTURE WORK
We have presented a coordination framework for object

tracking in multi-camera networks. The main contribution
lies in the coordination model, which allocates resources
dynamically to the best cameras at each time step. We
introduced a voting scheme to aggregate multiple track-
ing estimates and a flexible preference function for dynam-
ically switching between cameras. In contrast to typical
approaches to multi-camera tracking, which aggregate data
from all available sensors, our method reduces resource re-
quirements, making it suitable for real-time application. We
are investigating more complex preference functions, with
the goal of predicting a camera’s future suitability to detect
a target by incorporating knowledge from environment or

Figure 5: Cooperative camera switching for three cameras.
In the top row (frame 491), camera 3 has drifted. In the bot-
tom row (frame 492), camera 5 becomes active, and camera
3 reinitializes using the estimates from the best cameras.

human motion models. In addition, we plan to investigate
appearance models that can be shared among camera views
to facilitate camera switching and re-initialization.
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