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Abstract. We present a framework for combining automated and inter-
active visual analysis techniques for use on high-resolution biomechani-
cal data. Analyzing the complex 3D motion of, e.g., pigs chewing or bats
flying, can be enhanced by providing investigators with a multi-view
interface that allows interaction across multiple modalities and repre-
sentations. In this paper, we employ nonlinear dimensionality reduction
to automatically learn a low-dimensional representation of the data and
hierarchical clustering to learn patterns inherent within the motion seg-
ments. Our multi-view framework allows investigators to simultaneously
view a low-dimensional embedding, motion segment clustering, and 3D
visual representation of the data side-by-side. We describe an application
to a dataset containing thousands of frames of high-speed, 3D motion
data collected over multiple experimental trials.

1 Introduction

As CT technology becomes more mature, scientists are now able to capture high
speed motion of bones and joints at the rates of 250 to 500 frames per second
with sub-millimeter accuracy [1]. This new imaging modality has allowed the
scientists to examine animal kinematics movement in ways that have not been
possible before. However, with such rich information, new methods for analyzing
biomechanical motion data become increasingly important.

Some work has already considered exploring this data both visually and inter-
actively [2, 3]. These systems allowed the scientists to examine raw biomechanical
data, but with limited automated analyses. Visualizations have been developed
to reanimate the motion data by displaying bones moving in space and over-
laying additional data, such as instantaneous helical axes computed from the
motion [2]. Recently, Keefe et al. developed an interactive system that combined
these 3D motion visualizations with complementary 2D visualizations to better
capture the higher dimensionality of the data [3]. These two systems have aided
scientists in characterizing the data and finding patterns within the animals’ be-
haviors. There are limitations to these systems, however, based on their reliance
on user interactions and visual inspection. The sheer volume and complexity of
the data may obscure patterns or relationships from manual discovery.



2 S. Spurlock, R. Chang, X. Wang, G. Arceneaux, D. Keefe, and R. Souvenir

In this paper, we extend the previous work on biomechanical motion analy-
sis to incorporate automated methods for analysis. Specifically, we incorporate
dimensionality reduction and clustering techniques to reduce complexity and
highlight patterns within the data. We then integrate the result of these unsu-
pervised learning approaches into an interactive tool to enable visual analysis.

While these automated analysis techniques for biomechanical motion are
common in the machine learning and computer vision fields, they have rarely
been integrated with highly interactive visual analytical systems. By leveraging
a blended model of learning approaches with interactive visual analysis, we aim
to enable a new style of hybrid investigation [4, 5]. Using this system, an investi-
gator can utilize automated computational methods to identify hidden temporal
patterns embedded within the data while retaining full interactive exploration
capabilities to analyze the data either in raw or post-processed form. In our
system, a low-dimensional graphical representation of the data can be viewed
concurrently with clustering output, and side-by-side with relevant video clips.
We believe that this synthesis is an advancement over previous systems in which
the burden of investigation is solely dependent upon the user, and that by using
this hybrid approach the user can identify new patterns more quickly and in a
repeatable fashion.

2 Related Work

Much research has focused on analyzing biomechanical motion through 3D visu-
alizations. Most of these 3D visualization systems focus on rendering the spatial
changes of different parts of motion data, for example, the trajectory of jaws or
the rotation of joints [3]. Using direct manipulations, most of these systems allow
the user to control the viewpoint and to focus on movements of specific parts. In
recent work, Keefe et al. [2] presented an effective 3D visualization framework
for biomechanical motion analysis with interactive visualizations with detailed
anatomical features.

The other major aspect of biomechanical motion analysis is the temporal
patterns. Visualizing trends in time-varying and multi-variate data has been
considered in depth within the information visualization community [6]. How-
ever, for visualization of biomechanical motion over time, 3D views of the model
are often animated, and additional data attributes are often visualized using
color, texture, streamlines, and 3D data glyphs [2, 7, 8]. While these annotated
3D views can be quite powerful, it has been suggested that understanding trends
over time through animation may not be the most effective strategy [6]. Our sys-
tem follows the framework developed by Keefe et al. [3] in that we also utilize
a multiple coordinated visualization approach and support analysis using both
the 3D model view and 2D information visualizations.
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Fig. 1. Example images from the pig chewing motion data set

3 Biomechanical Motion Data

The techniques and example application in this paper are presented with the goal
of applying broadly across different types of motion analysis of interest in the
biological sciences. The specific datasets driving the framework presented here
come from a study at Brown University that made use of marker-based X-ray
Reconstruction of Moving Morphology (XROMM)4 to capture measurements of
the lower jaw movements of miniature swine (Sinclair strain) during mastication.

Although these data describe the motion of just two bones, these bones con-
nect to each other at two joints and also whenever the teeth come into contact
with each other; thus, the data serve as an ideal springboard for complex high-
dimensional, multi-joint analyses of other biomechanical structures. The chewing
motion itself is quite unique among animals, hence the interest from an evolu-
tionary biology perspective in studying the coordinated motion of these bones
under different experimental conditions.

From the raw data collected from multiple high-speed fluoroscopic videos
captured experimentally, 4x4 transformations can be derived to describe the
rigid body transformations (translation and rotation) of the pig’s mandible in
relation to its skull (see Figure 1). Previous research has identified groupings of
particular sequences of frames into segments, which identify related, temporally
proximate frames.

4 Automated Analysis of Biomechanical Motion Data

As described in Section 3, the biomechanical motion data is represented as 4×4
transformation matrices describing the positions of the individual bones. This
high-dimensional data describes the configuration of the animal at a particular
timestep and the time-series describes the biomechanical motion. In order to
better understand and visualize the motion and discover any underlying pat-
terns, we employ dimensionality reduction and data clustering. In this section,
we describe the steps for the automated analysis of this data.

4 http://xromm.org
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4.1 Dimensionality Reduction

Most data analysis techniques on high-dimensional points and point sets do not
work well. One strategy to overcome this problem is to find an equivalent lower
(typically 2 or 3) dimensional representation of the data. Dimensionality reduc-
tion is the technique of automatically learning a low-dimensional representation
for data. The most well-known techniques are Principal Component Analysis
(PCA) [9] and Independent Component Analysis (ICA) [10]. These methods
seek to represent data as linear combinations of a small number of basis vectors.
However, many data sets, including the transformation matrices of the biome-
chanical motion data considered in this work, tend to vary in ways which are
very poorly approximated by changes in linear basis functions.

Techniques in the field of manifold learning embed high-dimensional data
points which lie on a nonlinear manifold onto a corresponding lower-dimensional
space. There exists a number of automated techniques for learning these low-
dimensional embeddings, such as Isomap [11] and LLE [12]. These methods have
been used in computer vision and graphics for many applications, including
medical image segmentation [13] and light parameter estimation from single
images [14]. In this paper, we use the Isomap algorithm, but the general approach
could be applied with any of the other nonlinear dimensionality algorithms.

Fig. 2. 2D Isomap embedding of the pig chewing data set. Each point corresponds to
an original frame of data. For the indicated points, the corresponding image is shown.

Isomap embeds points in a low-dimensional Euclidean space by preserving
the geodesic pair-wise distances of the points in the original space. To estimate
the (unknown) geodesic distances, distances are calculated between points in a
trusted neighborhood and generalized into geodesic distances using an all-pairs
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shortest-path algorithm. With most manifold learning algorithms, discovering
which points belong in the trusted neighborhood is a fundamental operation.
Typically, the Euclidean distance is used, but in certain cases other distance
measures have been shown to lead to a more accurate embedding of the original
data [15]. Due to the structure of the transformation matrices (most notably
the rotational component) used in our data, we use a distance metric based on
exponential matrix mapping described in [16].

Figure 2 shows the Isomap embedding of one of the data sets. Each 2D point
represents one of the original frames from the video data and the corresponding
images of selected points are shown. One can observe a perceptual organization
of the original data in the embedded space. The x− and y−axes correlate with
the two major components of the motion: opening and closing of the mouth and
lateral motion of the mandible, respectively.

This embedding step describes the relationship between each of the frames
in the original data set, but doesn’t yet describe the known structure within the
data. Each of the biomechanical motions considered in the work are comprised
of multiple, short, temporal segments that correspond to distinct phases of mo-
tion. The shape of these segments in the embedded space can be used compare
multiple motion patterns. In order to discover the similarity among segments
within a data set, we apply hierarchical clustering.

4.2 Clustering

The process of comparing and grouping temporal segments from the embedding
into clusters can be automated using well-known unsupervised data clustering
techniques. We use agglomerative clustering to iteratively and hierarchically
merge similar segments into clusters. Depending on the goal of the analysis,
single-link, complete-link, or average-link can be used. In all three methods,
the distance measure [17] applied between segments uses a combination of curve
fitting and string matching techniques to calculate the similarity of two trajecto-
ries. The metric is scale-, rotation-, translation-, and duration-invariant. Figure 3
shows four segments from the data shown in Figure 2. Our clustering process
iteratively groups the segments shown from left to right as being the most sim-
ilar in shape. From this process we generate a dendrogram, a hierarchical tree
structure, to allow the end-user to interactively choose the level of grouping that
most meaningful to the investigation.

5 Interactive Visual Analysis of Patterns in Motion Data

In this section, we describe an interactive visual interface for analyzing 3D mo-
tion data. This interface displays the raw data using an animated 3D model view,
as well as the automated analysis output described in section 4. By integrating
these views using a multiple-coordinated-views approach [18], our system pro-
vides methods to perform interactive analysis across modalities. Shown together
in Figure 4, these views allow the user to explore the 3D motion sequence in
space and time, in its embedding space, as well as at a clustering level.
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Fig. 3. Separate phases of motion represented as segments from the Isomap embedding.
The two on the left were measured to be the closest in shape.

5.1 Exploring the Motion Space

Given our initial dataset of 3D transformations, we utilize an interactive 3D
visualization and timeline view to help the user analyze the motion data from
both spatial and temporal perspectives.

3D Visualization for Motion Exploration Following related work on biome-
chanical motion visualization, our system supports motion playback, viewpoint
adjustment, and motion sequence comparison. Figure 4 (B) shows the 3D visu-
alization in our system. The user can interactively change the viewpoint of the
model and focus on the movement at each time step of the data. Coordinated
with the embedding space, the 3D visualization enables the users to explore the
precise spatial location of each motion sequence. If any specific motion sequences
have been selected, our system will also show a side-by-side playback panel to
help the user compare the motion difference between these sequences.

Timeline Visualization for Temporal Patterns To aid in finding temporal
patterns, a timeline visualization shows time in relation to segments of motion
frames, as well as hierarchical clusters of segments. Figure 4 (E) shows group-
ing of the motion data based on the predefined segments. These segments are
dynamically color-coded to correspond to the cluster into which they have been
grouped. As the user traverses the clustering hierarchy, the number of clusters
will change accordingly. Higher thresholds results in fewer clusters, but allows the
user to identify high-level behavioral patterns in the timeline; whereas a lower
threshold produces more clusters, but allows the user to examine the segments
in greater detail.

5.2 Analyzing the Embedding Space

The low-dimensional embedding space and the hierarchical clustering provide a
foundation for further interactive analysis. When a dataset is first loaded, an
overview of the data is displayed using the three coordinated views seen in Fig-
ure 4: a small-multiples view, an embedding view, and a 2D plot of each segment
whose positions are based on their similarities. These three views have been care-
fully chosen for their analytical capabilities in analyzing different aspects of a
3D motion sequence.
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Fig. 4. The overview of our interactive visual analytics system. (A): The embedding
view. (B): The 3D visualization view. (C): The segment view. (D): The cluster view.
(E): The timeline view

Small Multiple Views We designed the small-multiples view to represent
individual motion sequences in the embedding space. Because biomechanical
motion data typically contains cycles, a key feature of our system is to help
group and analyze the cyclic motions. Figure 4 (C) shows how these motion
segments are assigned to small-multiple images corresponding to a trajectory
in the embedding space. Each segment represents one cycle of frames, where
each frame is a point in the embedding. Clicking on a segment will draw the
trajectory on the relevant points in the embedding and show an animation of
the corresponding frames in the 3D visualization view (see figure 4 (B)). The
background color of each multiple encodes the data segment and corresponds to
those in the cluster and timeline views (see Figure 4 (D)).

Embedding Space View Within the embedding (unlike the original high-
dimensional data space), the Euclidean distance represents the dissimilarity be-
tween data points. To highlight the data distribution and correlation between
different motions, we naturally display this as a 2D scatterplot where each frame
of the motion data is encoded as a point. Previously defined segments encapsu-
late particular sequences of motions, which correspond to a sequence of points
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in the embedding. Using standard mouse interactions, the user can analyze the
low-dimensional representation to explore the perceptual organization of a par-
ticular data set. The user can examine each frame by mousing over the points,
which will automatically update the 3D visualization.

Zoomable Cluster View Our system provides an interactive, zoomable cluster
view. This view is a graph visualization that shows a point for each cluster. The
points are positioned using multi-dimensional scaling (MDS) with the distance
metric described in Section 4. Each bubble in this view indicates one cluster and
is color-coded in accordance with the small-multiple and timeline views. Each
cluster varies in size with the number of frames it encapsulates. As shown in
Figure 4 (D), the cluster view enables user to interactively zoom in and out on
different levels of grouping. The user can use the scroll bar to choose different
levels of the grouping results, which automatically updates the size of individual
clusters and corresponding coloring scheme.

5.3 Connecting the Embedding Space and the Data Space

The interaction and linked views are the keys for the user to simultaneously
explore and analyze both the high-dimensional motion space and the lower-
dimensional embedding. Since all views are coordinated visually and interac-
tively, they collectively provide a cohesive exploration environment and support
analysis of both spatial and temporal perspectives. For example, the embedding
space view may be animated either through interaction in the embedding view or
by selecting individual segments from the small multiple view. Also, the timeline
can depict the temporal relationships at multiple clustering levels.

6 Discussion

In this paper, we introduce an integrated system that combines automated an-
alytical methods with interactive visual analysis. Compared to existing work,
our approach is innovative in that automated analysis can reduce the amount
of ambiguity introduced through a user’s interactions. For instance, one of the
most important features in the work by Keefe et al. [3] is the small-multiples
view showing a trace of a point on the pig’s teeth plotted over time. This view
is similar to the small-multiples view shown in Figure 4 (C). However, the key
difference is that the tracer view requires the user to manually interact with
the 3D view such that the front of the pig’s model is facing the user’s view-
point. Only using this particular perspective can the tracer view show a pig’s
bilateral chewing behavior, which is a sideways grinding motion during a pig’s
chewing cycle. However, examined from the side-view, this subtle motion in the
chewing would have been unnoticed. In contrast, with our method, we learn an
embedding of the pig’s motion, which is analytically justified and is without the
ambiguity of a user’s interactions. Since every user and analysis session presents
the same embedding visualization, multiple analyses will be more consistent, and
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the users are more likely to detect the same behaviors, thus providing a more
defensible analysis result each time [19].

The agglomerative clustering we use provides the user a hierarchical struc-
ture to explore possible repeating phases within the motion. The user can in-
teractively choose an appropriate threshold given a specific analytical goal. For
instance, the user can choose a high threshold in the clustering view, which will
produce fewer clusters of similar chewing segments to discover high-level behav-
iors. On the other hand, to identify low level differences between the segments,
a lower threshold can be used to examine which of the segments are the most
similar. When used in conjunction with the 3D comparison view, the user can
then discover minute difference between the segments.

Without the combined use of automated methods and interactive visual rep-
resentations, such analyses and discoveries may not be possible. Even with sys-
tems that allow for highly interactive visual analysis, the types of analyses are
usually limited to visual comparisons by the user, which can be ambiguous de-
pending on the user’s selections of viewpoints or segments of interest. Further-
more, the user cannot perform analyses across multiple levels of abstractions such
as the features that our system can provide through clustering and interactive
selection of thresholds.

7 Conclusions and Future Work

With new advances in scientific imaging, an increasing amount of high-resolution,
high-quality biomechanical movement data is becoming available. With this op-
portunity comes the challenge of enabling scientists to make sense of information
that is complex, temporal, multiphase, and cyclic. We presented a framework tar-
geted at helping researchers meet this challenge. By combining machine learn-
ing methods with interactive visualization techniques, we provided users with
a multi-pronged, hybrid approach to investigation. We demonstrated the com-
bination of multiple, simultaneous views of the data where each view supports
independent interaction, but work in concert to support more complex analysis.

This system is a positive first effort towards tighter integration of the user
experience with the underlying analysis methods. In the future, we plan to con-
duct case studies with domain experts and apply our system to broader studies
across data sets from more diverse domains. In addition, we plan to investigate
additional analysis methods for the automated analysis of this type of temporal
data. For example, Hidden Markov Models (HMM) could be used for data where
the segments are not explicitly defined but can be learned based on the original
data sequence. These potential additions combined with the general approach
of blending automated and multi-view, interactive visual analysis open the door
to new insights from scientific data analysis and exploration.
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