
Gamesourcing to Acquire Labeled Human Pose Estimation Data

Richard Souvenir, Ayman Hajja, Scott Spurlock
University of North Carolina at Charlotte

Charlotte, NC 28223 USA
{souvenir,ahajja,sspurloc}@uncc.edu

Abstract

In this paper, we present a gamesourcing method for au-
tomatically and rapidly acquiring labeled images of human
poses to obtain ground truth data as input for human pose
estimation from 2D images. Typically, these datasets are
constructed manually through a tedious process of clicking
on joint locations in images. By using a low-cost RGBD
sensor, we capture synchronized, registered images, depth
maps, and skeletons of users playing a movement-based
game and automatically filter the data to keep a subset of
unique poses. Using a recently-developed, learning-based
human pose estimation method, we demonstrate how data
collected in this manner is as suitable for use as training
data as existing, manually-constructed data sets.

1. Introduction
The recent emergence of low-cost, RGBD sensors ig-

nited a flurry of projects that took advantage of real-time,
vision-based depth sensing for gaming, gesture-based con-
trol, and virtual reality. RGBD sensors have simplified diffi-
cult computer vision problems, such as person detection and
pose estimation, by sidestepping the depth ambiguity inher-
ent in flat images. However, there is still a need to solve
these types of problems from 2D imagery. In this paper,
we present an approach for using RGBD sensors to rapidly
acquire annotated training data for human pose estimation
from 2D images. We take advantage of the fact that these
sensors are commonly used for gaming to tap into a diverse
pool of willing participants. With this approach, large vol-
umes of labeled data can be obtained more quickly and effi-
ciently than the traditional approach of manual annotation.

In recent years, many recognition problems in computer
vision have been formulated as supervised learning prob-
lems. Getting labeled examples to develop robust learn-
ers usually involves tedious manual effort on thousands (or
more) images. Recently, the computer vision community
has embraced the idea of “gamesourcing” labeled data. To
annotate images for object recognition, the Google Image

Figure 1. We collect annotated images from motion-based games
as training data for pose estimation from 2D images. The Mi-
crosoft Kinect outputs (from L-R) an RGB image, depth map, and
joint locations.

Labeler and the ESP game [15] allow an anonymous pair of
players to suggest descriptive terms for unlabeled images.
Peekaboom [16] allows two players to localize objects in
a scene by identifying and labeling regions of images us-
ing terms previously collected from the ESP game. Pho-
toSlap [7] is a game for face recognition that lets players
match the same person in different images. These methods
have been very useful for rapidly acquiring new sources of
training data for a variety of supervised learning tasks.

The main contribution of this work is an automated ap-
proach for capturing labeled data for human pose estimation
through gamesourcing. This will provide a new avenue for
obtaining training and testing data for pose estimation algo-
rithms, avoiding tedious manual annotation.

2. Data Collection

Pose estimation methods that incorporate depth informa-
tion far outperform their 2D analogs. In fact, it is the accu-
racy of 3D pose estimation that we will leverage to generate
labeled data for the 2D problem. The Kinect employs fast
supervised learning algorithms for joint position estimation
that are based on randomized decision forests [12], which
can be quickly evaluated to provide real-time 3D pose esti-
mates. Figure 1 shows an example of output from the Kinect
during gameplay: an RGB image, depth map, and joint lo-
cations. A typical gaming session generates a large amount



of data, much of it not needed. First, although the depth-
based pose estimation algorithms are usually reliable, there
can be instances where unusable data is extracted. Sec-
ond, consecutive frames or images of a player repeating a
pose can be quite similar and, therefore, redundant. One ap-
proach would be to filter the data after the gaming session.
However, as our data collection runs alongside the game on
consumer-grade hardware, the I/O overhead of saving this
amount of data to disk could negatively impact real-time
gameplay. In this section, we describe our methods for real-
time filtering of noisy and redundant data.

Obtaining Registered Joint Positions The IR sensor
used for depth estimates is not synchronized with the RGB
camera. This does not affect gameplay since the RGB data
is rarely used; in the few games where video is even dis-
played, it is not overlaid onto a skeletal model or avatar
where the synchronization issues would be noticed. To use
this data for training pose estimation algorithms, however,
it is important that the joints and images are registered.

In a call to the Kinect data acquisition function, the cur-
rent RGB image, depth image, and joint positions are re-
turned with individual timestamps (in ms), which we re-
fer to as tRGB , tDEP , and tJNT , respectively. We de-
termined the registration offsets empirically by manually
identifying the joint positions in a small set of depth and
RGB images and measuring the sum of the squared differ-
ences to those returned by the Kinect. Because the joint
estimates are derived from the depth images, the times-
tamps for corresponding depth and RGB images precede
the joint data. Alignment error was minimized for depth
images when tJNT − tDEP ≈ 33, and for RGB images
when tJNT − tRGB ∈ [38, 48]. On an unloaded system,
data can be acquired at 30fps. So, for a discrete data ac-
quisition event, i, we collect an RGB and depth image with
timestamps tiRGB and tiDEP , respectively. At t + 1, we
collect joint locations with timestamp ti+1

JNT . If the time-
stamp differences correctly align, the data is stored for fur-
ther processing. Due to both the asynchronicity between
sensors and occasional dropped frames, roughly 1

3 of the
data is registered during a typical gaming session.

Data Filtering Two additional checks are performed on
the joint data that has been matched to an image. First,
most image-based pose estimation methods extract patches
surrounding the joint location. Cases where a joint location
is too close to the image border for a patch to be extracted
are discarded. Second, in cases of very fast motion or joint
self-occlusion, the joint estimates can be erroneous. Using
the foreground mask supplied with the depth data, any in-
stances where joints fall outside of the foreground, such as
in Figure 2, are also discarded.

Figure 2. Instances where joints (already registered with images)
are near the image border or outside the foreground are discarded.

Skipping Redundant Data For learning methods, sim-
ilar examples in the training data provide little additional
benefit. In our case, this corresponds to images of a player
in similar poses, which often occurs in sequential frames or
when the player is performing a repeated action in a game.
To quickly determine if a similar pose has already been col-
lected, we use locality-sensitive hashing (LSH) [2] for find-
ing nearest neighbors in high-dimensional spaces. Given a
query point and a database, LSH discovers the approximate
nearest neighbors, using the Euclidean distance, in sublin-
ear (in the number of database elements) time.

LSH projects high-dimensional points onto sets of ran-
dom vectors under the principle that nearby points (in the
ambient space) will project to similar locations more of-
ten than more distant points. LSH uses L groups of k
hash functions that map a high-dimensional point, v, onto
the set of integers. The hash functions, h, take the form:
h(v) =

⌊
a·v+b

w

⌋
where (vector) a and (scalar) b are ran-

domly selected and w is a small integer (4 is the default
value). Two points vi and vj which match all k hash val-
ues for any of the L groups are putative nearest neighbors.
The Euclidean distance is used to determine whether or not
the points meet the threshold, R, to be considered similar.
Typically the number of matches is small, so this scheme
avoids the linear-time approach of calculating the distance
between the query and all database points.

Figure 3 depicts the process of discarding non-unique
poses. Let yt = 〈Ht, Nt, . . . , RFt〉 be the vector of con-
catenated pixel locations of the joints (as defined in Fig-
ure 1(c)) at time t. To provide invariance to global pose
shifts, we apply an affine transformation to each point from
canonical image coordinates to a space defined (in the pos-
itive y direction) by the unit vector from the torso (T) to the
neck (N). Let y′t represent the array of transformed points.
At each timestep, t, y′t, is hashed using LSH. If there is a
collision with an existing database pose (i.e., the two pose
vectors are within R units), the current data is discarded.
If not, the pose is added to the database as a unique pose,
and the corresponding image is also saved. This process
continues until the gaming session ends or resource limita-
tions are reached. In Section 4, we describe LSH parameter



Figure 3. Real-time pose uniqueness check. If a new pose collides with a existing database pose, it is discarded, otherwise it is added to
the database. Using LSH, the collision checks occur in sublinear time (in the number of database items).

selection.

3. Generating Training Examples
Once the data has been collected, the last step is to trans-

form it to be usable with supervised methods for 2D pose
estimation. Recent methods for 2D pose estimation use a
discriminative approach that collects statistics on labeled
datasets for model building [4, 11, 13]. Methods for pose
estimation “by parts” use human body models that differ
in the number or type of joints specified. In our experi-
ments, we employ the 14-joint pose estimation model of
Yang and Ramanan [17]. Up to 24 joint locations can be
obtained from the Kinect.1 Figure 4(a) shows a mapping of
the Kinect joint positions to the input of this model.

The method in [17] uses a mixture of parts to estimate
pose in 2D images. Through interpolation, the 14 input
joint locations are extended to 26 total locations and, equal-
sized images patches are extracted from each location (Fig-
ure 4(b)). Each patch is represented using the Histogram
of Oriented Gradients (HOG) descriptor, and SVM is used
for classification. For pose estimation, instead of search-
ing for body parts individually to find a global configura-
tion, the authors noted that certain configurations between
neighboring body parts tend to be over-represented. The
limbs are modeled based on the relative positions of par-
ent and child joints, and a compatibility measure is calcu-
lated based on the co-occurrences of pairs. In Section 4,
we compare the performance of this learning-based method
on human pose estimation from 2D images when trained
with gamesourced examples or manually-constructed data
sets. It should be noted that any pose estimation “by parts”
method could have been selected if the Kinect joints could

1The Windows Kinect driver returns 20 locations (head, neck, shoul-
ders, elbows, wrists, hands, torso, waist, hips, knees, ankles, and feet).
The OpenNI driver adds four (collars and fingertips).

(a) Joints (b) Image Patches

Figure 4. (a) 20 joints can be obtained from the Kinect (with the
Windows SDK); those represented as green stars are the subset
used as input in [17]. (b) For joint locations and additional inter-
polated points (shown in yellow), image patches are extracted.

be easily mapped to the model.

4. Experiments with Gamesourced Data

To evaluate the use of gamesourced data for 2D pose esti-
mation, we used Astrojumper [6], a full-body Kinect-based
game developed to motivate exercise. The player controls a
flying avatar as different objects speed by. Points are earned
by touching certain objects, avoiding others, and “shooting”
enemies using punching motions. This version of Astro-
jumper was modified to use the Kinect on a PC via the Flexi-
ble Action and Articulated Skeleton Toolkit (FAAST) [14].
All experiments were carried out on a Windows 7 laptop
with a 3.33 GHz CPU and 8GB RAM.



Figure 5. The number of unique images saved per minute as a func-
tion of the similarity threshold, R.

LSH Parameters A key step in the real-time processing
of the matched joint/image pairs is the uniqueness check
using locality-sensitive hashing (LSH). LSH has four free
parameters, R (Euclidean distance threshold to be consid-
ered a match), k (number of projection vectors), L (num-
ber of hash functions), and γ (the probability that a near
neighbor is not reported). The E2LSH package provides a
method for optimizing k, and L given sample data, R and
γ, to minimize the expected query time. For γ, we used the
LSH default value of .1 (90% success probability). R im-
plies a trade-off between the amount of data collected and
the similiarity of the “unique” poses saved. We tested a
range of values for a player engaged in a 4-minute session
of Astrojumper. Figure 5 shows the plot of the number of
unique images saved per minute as a function of R. Fig-
ure 6 shows examples of the closest (in Euclidean distance)
poses of the resulting sets of saved images. WithR = 2, the
set of unique poses returned generally appeared to be suf-
ficiently distinct across different users. For the remaining
experiments, we use R = 2, γ = .1, k = 10, and L = 55.

Related Data Sets We compared gamesourced data to re-
cently curated, manually-labeled sets. PARSE [10] consists
of 305 outdoor images of people (∼150 pixels tall) mostly
playing sports and contains high background clutter and
self-occlusions. BUFFY [5] was collected from several TV
episodes of “Buffy the Vampire Slayer” and consists of 748
images from (mostly) indoor scenes. People appear at dif-
ferent scales and the background is highly cluttered. PAS-
CAL STICKMEN [3] is a subset of PASCAL VOC 2008
and contains 549 low to medium quality images of people
mainly standing. Similar to BUFFY, only upper body anno-
tations are provided. HUMANS IN 3D (H3D) [1] contains
1240 high quality images of people with 3D joint positions.
The LEEDS Sports Pose [8] dataset consists of 2,000 an-
notated images (recently extended to 10,000 [9]) of people
(∼150 pixels tall) performing sports activities.

Table 1 provides a summary of manually constructed
data sets compared to gamesourced data. Compared to these
data sets, the main advantage of gamesourcing is scalability
and flexibility. RGBD sensors for gaming are used in a wide

Figure 6. Examples of the closest unique poses from a 4-minute
gaming session. At R = 1, the poses are similar and would be
redundant for training. At R = 3, only 12 unique poses were
saved, so interesting poses were likely missed.

Data Set Images Scene Body Joints
PARSE 305 Outdoor Full 14
BUFFY 748 Indoor Upper 12

STICKMEN 549 Indoor Upper 14
H3D 1240 Both Full 20

LEEDS Sports 10,000 Outdoor Full 14
Gamesourced - Both Full 24

Table 1. Comparison of pose estimation datasets.

(a) ASTRO (b) PARSE

(c) LEEDS (d) BUFFY

Figure 7. Images from the data sets used in the experiments.

variety of environments by a wide variety of people of vari-
ous sizes and body styles. These sensors work both indoors
and outdoors and result in images of reasonable quality with
more joint estimates than current manual approaches.



Figure 8. Pose estimation results using a learning algorithm [17]
trained and tested with images from different data sources. PCP is
the percent of joints close to the ground truth. Higher is better.

2D Pose Estimation ASTRO is a gamesourced dataset us-
ing 15 different people playing Astrojumper for roughly
four minutes each. For ASTRO and three of the manually-
constructed data sets (PARSE, BUFFY, LEEDS), we ran-
domly selected 300 images each, split evenly into training
and testing sets. Using Yang and Ramanan’s algorithm as
the learning method, we performed 16 pairwise pose esti-
mation experiments with each of the four training and test-
ing sets. Figure 8 shows the results for these tests, reported
as Percentage of Correctly estimated Parts (PCP) [5]. A
body part is considered correctly labeled if it lies within
50% of the length of the ground truth body-part segment.2

Overall, ASTRO performed as well as the manually cu-
rated sets when used as training data. Except for LEEDS,
each training set performed best when the test set was drawn
from the same source. ASTRO for training and testing re-
sulted in the highest performance over all experiments. This
may be explained by the similarity of the scenes (e.g., a few
locations on a university campus) and few people, all play-
ing the same game. In contrast, each image in PARSE and
LEEDS contains a different person and background. How-
ever, the lack of data diversity in ASTRO did not negatively
affect the performance when tested on the other sets. Fig-
ure 9 shows example results with the estimated pose over-
laid. Each row shows a test image used with different train-
ing data. The first image, from ASTRO, shows an example
where, when trained with the gamesourced data, the algo-
rithm was able to correctly discover a case of self-occlusion.
The second image, from LEEDS, shows a simple pose in
cluttered a background, that was missed in some cases. The
third image, from PARSE, was difficult in all cases.

One difference between the images in each set was the
apparent variance of the poses. When used for training,

2BUFFY only contains annotations for the upper body, so the corre-
sponding results only include upper body joints.

Figure 10. Pose variance, measured as the number of PCA com-
ponents needed to account for 95% of the data variance.

PARSE performed the best overall, and LEEDS performed
well on each of the test sets. These data sets contain exam-
ples of athletes engaged in complex mid-air maneuvers. To
estimate the pose variance, we performed Principal Com-
ponent Analysis (PCA) on the vectors of joint positions for
the 300 images from each set and computed the number
of components necessary to represent 95% of the variance.
Figure 10 shows the pose variance estimates for the upper,
lower, and full body joints for the four datasets.

5. Conclusions and Future Work
We presented a method for collecting labeled data

through gamesourcing. Our approach does not involve a
game specifically developed to facilitate crowdsourcing; it
can be used with existing games. With data collected from
only a small number of players in a limited number of set-
tings, we achieved results comparable to training with man-
ually annotated data. While we expect the data diversity to
increase when used with more games and users, an inher-
ent limitation is the variety of poses that can be induced by
gesture-based games. Even the most enthusiastic gamer is
unlikely to execute the type of acrobatic actions performed
by athletes, as seen in other image sets.

Future work includes improving exemplar pose selec-
tion. For example, when a pose collides with the database,
one could use estimates of motion blur to determine which
instance to save. Also, comparisons could be added across
users that incorporate features to discard matches already
represented by previous players. Additionally, beyond pas-
sive data collection, the module could be incorporated into
games to dynamically adjust the goal or position of objects
to compel users to perform underrepresented poses.

References
[1] L. Bourdev and J. Malik. Poselets: Body part detectors

trained using 3D human pose annotations. In International
Conference on Computer Vision, 2009. 4

[2] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. Locality-
sensitive hashing scheme based on p-stable distributions. In



ASTRO PARSE LEEDS BUFFY

Figure 9. Example results from the experiments summarized in Figure 8. Each row shows example results on the same image with training
data from the gamesourced data (ASTRO) or the manually constructed data sets (PARSE, LEEDS, and BUFFY).

Proc. of the Symposium on Computational Geometry, pages
253–262. ACM, 2004. 2

[3] M. Eichner and V. Ferrari. Better appearance models for
pictorial structures. In British Machine Vision Conf., 2009. 4

[4] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ra-
manan. Object detection with discriminatively trained part-
based models. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 32(9):1627–1645, September 2009. 3

[5] V. Ferrari, M. Marin-Jimenez, and A. Zisserman. Progressive
search space reduction for human pose estimation. In IEEE
Conf. on Computer Vision and Pattern Recognition, pages
1–8, 2008. 4, 5

[6] S. Finkelstein, A. Nickel, Z. Lipps, T. Barnes, Z. Wartell,
and E. A. Suma. Astrojumper: Motivating exercise with an
immersive virtual reality exergame. Presence: Teleoperators
and Virtual Environments, 20(1):78–92, 2011. 3

[7] C.-J. Ho, T.-H. Chang, and J. Y. jen Hsu. Photoslap: A multi-
player online game for semantic annotation. In Proc. of AAAI
Conf. on Artificial Intelligence, pages 1359–1364, 2007. 1

[8] S. Johnson and M. Everingham. Clustered pose and nonlin-
ear appearance models for human pose estimation. In Pro-
ceedings of the British Machine Vision Conference, 2010. 4

[9] S. Johnson and M. Everingham. Learning effective human
pose estimation from inaccurate annotation. In IEEE Conf.
on Computer Vision and Pattern Recognition, 2011. 4

[10] D. Ramanan. Learning to parse images of articulated bod-
ies. Advances in Neural Information Processing Systems,
19:1129, 2007. 4

[11] R. Rosales and S. Sclaroff. Learning body pose via special-
ized maps. In NIPS, pages 1263–1270, 2001. 3

[12] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio,
R. Moore, A. Kipman, and A. Blake. Real-time human pose
recognition in parts from single depth images. In IEEE Conf.
on Computer Vision and Pattern Recognition, 2011. 1

[13] C. Sminchisescu, A. Kanaujia, Z. Li, and D. Metaxas. Dis-
criminative density propagation for 3D human motion esti-
mation. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 390–397, 2005. 3

[14] E. A. Suma, B. Lange, A. Rizzo, D. Krum, and M. Bolas.
FAAST: the flexible action and articulated skeleton toolkit.
In IEEE Virtual Reality, pages 247–248, 2011. 3

[15] L. Von Ahn and L. Dabbish. Labeling images with a com-
puter game. In Proc. of Int’l Conf on Human Factors in Com-
puting Systems, pages 319–326. ACM, 2004. 1

[16] L. Von Ahn, R. Liu, and M. Blum. Peekaboom: a game for
locating objects in images. In Proc. of Int’l Conf on Human
Factors in Computing Systems, pages 55–64. ACM, 2006. 1

[17] Y. Yang and D. Ramanan. Articulated pose estimation with
flexible mixtures-of-parts. In IEEE Conference on Computer
Vision and Pattern Recognition, 2011. 3, 5


