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Abstract
Machine learning approaches learn models based on the statistical

properties of training data. Learned models may be unfair due to bias
inherent in the training data or because of spurious correlations based
on sensitive attributes such as race or sex. This type of bias can lead
to detrimental outcomes in important applications, including prison sen-
tencing, credit scoring, and loan approvals. In this work, we perform
a comparative study of techniques to increase the fairness of machine
learning based classification with respect to a sensitive attribute. We
assess the effectiveness of several data sampling strategies as well as of a
variety of neural network architectures, including conventional and ad-
versarial networks. Results are evaluated in terms of metrics measuring
both classification accuracy and fairness. We find that model architec-
ture and sampling strategy can both greatly affect metrics of fairness.
We also find that there is no single best combination that should be
used; the particular problem domain should drive the selection of neural
network architecture and sampling strategy.

1 Introduction

Machine learning is becoming increasingly common in everyday life. Models
are used to select ads to show users, recommend movies, and predict patient
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outcomes. Advances in computing power, machine learning algorithms, and
availability of training data have enabled the creation of models that can ex-
hibit high accuracy, but are typically difficult to audit because of their com-
plexity. Recently, many such models have been found to perpetuate societal
biases. For example, a study by ProPublica found that a system that pre-
dicted recidivism scores was racially biased, predicting a higher likelihood of
recidivism for Black individuals even when other factors were similar [1]. The
frequency and disproportionate impact of this type of systemic bias motivate
the necessity of finding ways to measure and mitigate bias in machine learning
models.

In this paper, our focus is on classification, the most common application
of machine learning, in which, given a data set of training examples and cor-
responding desired (ground truth) labels, a training process learns a model
that can accurately predict the correct labels for given data examples. The
training process seeks statistical patterns in the data that may be difficult or
impossible for humans to identify. The resulting model is typically optimized
to yield high levels of accuracy. We focus on artificial neural networks as the
learning method most commonly employed in recent machine learning research
and compare differing network architectures, particularly a vanilla "basic" net-
work, and an adversarial network that optimizes competing objectives during
training.

The training process is vulnerable to learning spurious correlations between
attributes, particularly when the amount of data is limited. Sometimes these
spurious correlations are harmless, e.g., learning that thin people always wear
hats [9]. Learning is further vulnerable to codifying bias already present in the
training data. These factors can result in models that are potentially detrimen-
tal, e.g., the association of Black individuals with higher rates of recidivism.
Such factors as race and sex are of particular relevance to bias in models, and
are often described as protected (or sensitive) attributes. Prior research has
sought to quantify bias using several different criteria. Below we give defini-
tions for two commonly used metrics. Following the notation of Zhang et al.
[11], we use X, Y , and Z to indicate the input data, true label, and protected
attribute, respectively. The model prediction for a given example is given by
Ŷ = f(X), where the function f is the learned model represented by a trained
neural network. We indicate a particular value of the output variable, Y , by
y, and of the protected variable, Z, by z.

• Demographic Parity measures that the predicted outcome is indepen-
dent of the value of a protected attribute. P (Ŷ = ŷ) = P (Ŷ = ŷ|Z = z)

• Equality of Opportunity measures that the predicted outcome is con-
ditionally independent of the value of a protected attribute for one par-
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ticular value of the outcome, which we indicate as 1.
P (Ŷ = ŷ|Y = 1) = P (Ŷ = ŷ|Z = z, Y = 1)

Our research evaluates strategies to reduce bias in learned models due to
spurious correlations and biased training data that may have an adverse im-
pact based on protected attributes. We conduct several experiments using the
UCI Adult Data set [3] with the goal of predicting whether individuals belong
to the high or low income group. We evaluate prediction accuracy with re-
spect to the target variable and several fairness metrics with respect to the sex
(male or female) attribute. Our experiments vary data sampling strategies as
well as neural network architectures with the goal of addressing four research
questions:

• RQ1 Can a basic neural network achieve boosts in fairness metrics?
In particular, we investigate whether basic network architectures can be
effective when paired with an appropriate data sampling strategy.

• RQ2 Which network architecture outputs the least biased predictions?
We compare the results of training models with simple architectures as
well as more complex, recently developed adversarial architectures.

• RQ3 What is the best data sampling strategy to increase fairness?
We compare several different strategies, including resampling to ensure
the number of training examples is balanced over possible values of the
sensitive attribute, of the desired label, and of both.

• RQ4 Can we combine good architecture and data sampling to achieve
better results?
We evaluate the results of pairwise combinations of several sampling
strategies and network architectures.

In the next section, we review recent work in the area of machine learning
fairness. In Section 3, we describe our methodology, including data sampling
strategies and neural network architecture choices, followed by a review of our
experiments and results in Section 4. We conclude in Section 5 and offer some
thoughts on potential directions for future work.

2 Related Work

Fairness in machine learning is becoming an active area of research. A recent
survey focuses on the role that unbalanced training data can play in con-
tributing to this issue, and groups work in the area into approaches that focus
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on pre-processing the data and approaches that address the issue algorithmi-
cally [7].

Wang et al. evaluates several bias-reduction techniques in a computer vision
context [10]. The authors propose training an ensemble of domain-independent
classifiers (i.e., one classifier per possible value of a protected attribute). In-
terestingly, while this approach often outperforms a variety of alternatives, in
some experiments, sampling with replacement to manually balance a training
data set performs better. Oversampling techniques appear to be particularly
effective when the data set is large (mitigating overfitting) and the amount of
bias inherent in the data is smaller.

2.1 Adversarial Networks

A particular emphasis in much of the recent work has been on using specialized
neural network architectures to help reduce bias in learned models. Adversarial
learning seeks to optimize multiple neural networks with competing objectives.
Typically, one network optimizes classification accuracy for a given model,
while another network optimizes the ability to guess the value of a protected
attribute given the classifier’s output. By alternately training both networks,
the goal is to learn a model that can predict with high accuracy while also
exhibiting low levels of bias.

Several recent approaches [2, 4, 8, 11] propose to learn a mapping from
input data to a new representation that removes bias from the source data.
This learned representation is then suitable for learning unbiased classification
models. The approach leverages an adversarial network seeking to predict a
protected attribute based on the representation. Some work also finds that
having balanced data sets in terms of the distribution of examples over the
protected attribute is helpful in producing a fair model and that an adversarial
approach allows for smaller numbers of training examples [2].

2.2 Fairness Metrics

There are many different metrics to measure fairness in a learned model, with
new metrics being regularly proposed in the literature. Unfortunately, there
is no consensus as to a single best approach to quantifying fairness, and there
is generally a trade-off between model accuracy and various different fairness
metrics. One recent study, which conducted a survey of the human perception
of fairness of competing models in a hypothetical scenario, found that, while
participants showed a slight preference for equalizing fairness over accuracy,
they disagreed on how to measure it [6].

One measure to quantify fairness is equality of opportunity, introduced in
recent work to remove bias from learned models [5]. Other common metrics
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include demographic parity and equality of odds [11].

3 Methodology

In this section, we review our study’s neural network architectures and data
sampling strategies, as well as the data set used for evaluation.

3.1 Architecture

We experiment with four network architectures:
The Basic model is implemented as a simple fully connected 4-layer neural

network that takes in the data, X, and outputs the predicted label Ŷ . This
model serves as a baseline for comparison to the others.

The Split approach trains a separate Basic model for each of the possible
protected attribute values, allowing each network to model a separate distri-
bution. For a protected attribute like sex with two possible values, we train
two independent basic models. At test time, each example is classified by the
appropriate model.

The CAN (Classifier-Adversarial Network) architecture follows an adver-
sarial learning approach, similar to several recent methods [2, 4, 11]. Adver-
sarial learning works by pitting two competing neural networks against each
other. The first, f , is the classifier, based on the Basic architecture described
above, which attempts to predict the label, Y . The second network, g, uses the
output from the classifier, Ŷ , to predict the protected attribute, Z. Training
proceeds iteratively, alternately optimizing each network. After training, the
networks reach an equilibrium, with the goal that the classifier performs with
a high level of accuracy and the adversary performs poorly, near the level of
random guessing in its ability to predict the protected attribute, thus limiting
the correlation between the output of the classifier and the sensitive attribute.

The CANE model (CAN with Embedding), similar to CAN, trains com-
peting classification and adversary networks. However, for CANE, the input
to the adversary is augmented to include, in addition to Ŷ , the prediction from
the classifier, the features from the penultimate layer of the classifier network.
These features constitute an embedded, or lower-dimensional, representation
of each input, X. They provide the adversary with more information, with the
goal of helping to learn a less biased model. This variant of the CAN approach
is actually more common in recent literature [2, 4, 11].

3.2 Data Sampling

Several recent approaches have focused on the impact of data sampling on
fairness [5, 10]. To see how data affects the overall fairness of the model, we
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Income Female Male
<=50K 9,592 15,128
>50K 1,179 6,662

Table 1: Counts of observations across income and sex in the highly unbalanced
UCI Adult data set. Of 32,561 examples, there are many more low-income male
observations (46.5%), while only 1,179 (3.6%) are high-income females.

compare 4 sampling approaches. No Sampling, NS, uses the data without
modification, serving as a baseline. Sensitive Sampling, SS, resamples the
training data so that the number of examples from each possible value of the
sensitive attribute is the same (e.g., the same number of men and women).
Label Sampling, LS, resamples the training data in a similar fashion with
respect to the target variable, while Sensitive Label Sampling, SLS, equalizes
the number of examples across each combination of sensitive attribute and
target variable value.

3.3 Data

For our study, we selected the UCI Adult data set [3], which contains 14 contin-
uous and categorical features including age, education, race, sex, and marital
status, as well as an associated target variable indicating whether or not each
individual’s income is above or below $50K. This data set is well suited to our
experiments because it is unbalanced in terms of the number of examples across
both the sensitive attribute of sex as well as the target label. It has been shown
to contain bias based on sex, and has been used in a variety of recent work
on bias mitigation [2, 8]. As Table 1 shows, counts of observations across sex
and income in the UCI Adult Data set are heavily skewed. Nearly two thirds
of the observations are male and nearly three quarters of the observations are
low-income. These disparities become even more apparent when looking at the
counts for each combination of sex and income. Observations falling into both
the high-income and female bins make up less than 4% of the entire data set.

4 Results and Discussion

In this section, we present our results and discuss findings for each of the four
research questions.

Implementation The neural networks were implemented in Python using
TensorFlow. For each architecture and sampling combination, models were
trained for 100 epochs using the ADAM optimizer and a learning rate of 2e-4.
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Acc. Acc. Acc. Parity Equality Equality
Model Sampling Overall Female Male Gap Gap - Gap +
Basic NS 0.8479 0.9214 0.8116 0.1870 0.0808 0.1102
Basic SS 0.8759 0.9399 0.8119 0.1732 0.0841 0.0446
Basic LS 0.8744 0.9391 0.8097 0.1780 0.0880 0.0245
Basic SLS 0.8766 0.9416 0.8116 0.1866 0.0936 0.0069
CAN NS 0.8481 0.9192 0.8129 0.1613 0.0632 0.0257
CAN SS 0.8742 0.9399 0.8085 0.1610 0.0776 0.0670
CAN LS 0.8764 0.9413 0.8115 0.1631 0.0770 0.0513
CAN SLS 0.8737 0.9402 0.8073 0.1458 0.0673 0.0899
CANE NS 0.8444 0.9208 0.8066 0.1375 0.0496 0.0030
CANE SS 0.8752 0.9394 0.8110 0.1647 0.0764 0.0218
CANE LS 0.8732 0.9386 0.8078 0.1673 0.0820 0.0545
CANE SLS 0.8582 0.9301 0.7862 0.1301 0.0618 0.0365
Split NS 0.8428 0.9133 0.8080 0.1737 0.0712 0.0845
Split SS 0.8532 0.9478 0.8064 0.1695 0.0896 0.0919
Split LS 0.8539 0.9468 0.8080 0.1684 0.0876 0.0946
Split SLS 0.8529 0.9447 0.8075 0.1748 0.0916 0.0816

Table 2: Experimental results with best value for each column bolded, second
best underlined. For accuracies, higher is better; for gap metrics, lower is
better. There tends to be a trade-off between better accuracy and gap metrics.

Metrics Table 2 lists the results for experiments with each of the models
and sampling strategies. Results are averaged across multiple trials using 5-
fold cross validation. For fair comparison, the same training-validation splits
are used for each variant. Metrics include classification accuracy (overall and
broken out for male and female) as well as fairness [2], based on the concepts
of demographic parity and equality of opportunity defined in Section 1. The
parity gap is calculated as the difference between probabilities of the model
predicting high-income for the two sexes. The equality gap is the difference
in probability of predicting each class, given the sex. This metric can be
calculated for each of the target values, i.e., one for low and another for high
income (Equality Gap - and +, respectively).

Question 1: Can a basic neural network achieve boosts in fairness
metrics? Our results show that, for the basic network architecture, compared
with not sampling, the other sampling strategies improve accuracy (SLS sam-
pling yielded the highest overall accuracy of 87.66% across all experiments), but
do not greatly improve fairness, with the exception of the high-income equality
gap, which shows some of the lowest scores across all tests. Interestingly, the
accuracy increase for SLS sampling comes primarily from more accurate classi-
fication of female examples, suggesting that this strategy improves the model’s
ability to generalize for this underrepresented set. This outcome is supported
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Figure 1: False positive (top) and false negative (bottom) rates for each sam-
pling method grouped by architecture. The columns show (left to right) overall,
female, and male rates, respectively.

by a closer look at classification error. Figure 1 breaks out errors in terms
of false positive rate (FP), when the model incorrectly predicts high-income,
and false negative rate (FN), when the model incorrectly predicts low-income.
FP and FN are shown separately for overall, female, and male examples. For
female examples, switching from no sampling to SLS causes the false positive
rate to drop from 0.052 to 0.038, and the false negative rate from 0.027 to
0.021, while for male examples the error rate increases.

Question 2: Which network architecture outputs the least biased
predictions? Compared to the basic model, all other model types result in
some improvement in parity gap. This pattern was somewhat visible for the
low-income equality gap, and less so for the positive equality gap. Overall,
the adversarial architectures (CAN and CANE) produce models with better
fairness metrics, and the CANE architecture unquestionably shows the best
improvements to fairness metrics compared with the basic model. With no
sampling, CANE results in the lowest equality gap (0.0496 and 0.0030) and
second lowest parity gap (0.1375) across all experiments. The split model gen-
erally results in fewer improvements to fairness metrics, although combined
with sampling strategies, does result in the highest accuracies for female ex-
amples in particular. Additionally, for false negative rate (Figure 1), we find a
17.47% decrease when using CANE with SLS vs. the CAN model with SLS.
Compared to the basic model with SLS, false negative rate decreases by 27.43%.
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Question 3: What is the best data sampling strategy to increase
fairness? No single data sampling strategy improves all metrics across the
board. For the adversarial models (CAN and CANE), no sampling (NS) gen-
erally results in the best parity and equality metrics, followed by SLS. For the
basic and split models, parity gap is lowest for SS and LS sampling, with no
clear-cut pattern for equality gap metrics. Figure 1 shows the impact of the
type of sampling and model architecture on classification error rates. Most of
the variability is due to female examples, with female false positive and nega-
tive rates exhibiting greater changes due to architecture and sampling choices.
We theorize that this means that the models learn the distribution of females
at varying levels based on the way the data is supplied and the model chosen.
It is interesting to note that the false negative rates for CAN and CANE are
similar for each of the resampling methods.

Question 4: Can we combine good architecture and data sampling
to achieve better results? We find that overall, sampling strategies have
more positive impact on the basic architecture. The adversarial architectures
perform better from a fairness perspective with no sampling, although sampling
can lead to accuracy improvements. In general, the results suggest a trade-off
between classification accuracy and fairness, with improvements in one com-
ing at the cost of reduction in the other. While there is no one clearly best
combination of architecture and sampling, CANE with SLS provides the best
scores on the fairness metrics. For a good compromise between accuracy and
fairness, we note that CAN with LS scored second-highest in overall accuracy
while achieving fairness scores near the median of all experiments.

5 Conclusion

In this paper, we evaluate the impact of data sampling and neural network
architecture on classification accuracy and fairness metrics with a series of ex-
periments on the UCI Adult data set. We find that sampling and architecture
can both have important effects on classification results, but that no single com-
bination of approaches yields top scores across all measures. Instead, there is a
trade-off that allows an approach to be tuned to a particular domain where one
metric may be more important than another. For example, a low false negative
rate might be vital for medical diagnosis, while for credit scoring, a provably
low bias might be required by law. For the future, further work investigat-
ing explicitly incorporating fairness metrics into neural network training may
provide valuable improvements to learned models. We are also interested in
learning generative models of data distributions to support data augmentation
of under-represented examples.
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