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ABSTRACT
We address the problem of automated discretization for con-
tinuous labels in the context of head pose estimation from
overhead cameras. Due to the lack of visual detail, precise
head pose estimates are not always possible. A common ap-
proach is to discretize the space of head pose angles, turning a
real-valued prediction task into a coarser (ordered) classifica-
tion variant. Often, however, the ranges are arbitrarily defined
(e.g., dividing up parameter space evenly). Our work incor-
porates label discretization into the feature learning process
and improves the accuracy of coarse head pan angle predic-
tion from overhead cameras on a benchmark dataset.

Index Terms— pose estimation, supervised learning,
clustering

1. INTRODUCTION

Automated gaze estimation has applications to surveillance
and marketing. However, using typical overhead surveillance
cameras, facial features (eyes, nose, mouth) may not be read-
ily visible (Figure 1), limiting the opportunity for fine-grained
gaze estimation. A common workaround is to discretize the
pose space and return coarse predictions. For example, the
cyclic head pan (left-right) range is commonly divided into
eight evenly-sized bins, spanning 45 degrees of rotation each.
However, such arbitrary partitions may not align with the nat-
ural change points inherent in the data. In this paper, we seek
to learn coarse discretizations using a data-driven approach by
incorporating label discretization into the training pipeline.

Approaches to head pose estimation can be broadly clas-
sified based on the apparent size of head in the image. For
near-field applications, where faces occupy millions of pix-
els, recent methods (e.g., [1, 2, 3]) can provide fine-grained
estimates and accurate facial marker predictions. However,
we consider the far-field case, where a head may only oc-
cupy hundreds of pixels. Some methods rely on generic im-
age feature descriptors (e.g., HOG, LBP) as part of a tradi-
tional machine learning classification pipeline [4, 5, 6], while
others develop custom features [7, 8]. Similar to ours, recent
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Fig. 1: Precise head pose estimates are not always possible
from overhead cameras. Our method provides an alternative
to arbitrary coarse discretization of head pose angles.

approaches have incorporated convolutional neural networks
(CNN) to sidestep the need for hand-crafted features [9, 10,
11]. However, these approaches rely on accurate face local-
ization, which is not always possible with low-resolution face
patches, as we demonstrate in our experiments.

There have been some approaches designed for lower res-
olution images that do not discretize the label space, but
provide real-valued estimates. One method operates on
artificially-reduced resolution images for privacy preserva-
tion, but is designed only for forward-facing subjects [12].
Other approaches fuse estimates from networks of cameras
to provide real-valued head pose predictions (e.g., [13, 14]).
These approaches, however, depend on the availability of
multiple, calibrated cameras in the environment.

While our work considers discretizing labels, previous
work has considered discretizing feature values, or bucketi-
zation [15, 16]. For example, most variants of decision tree
and Naive Bayes classifiers rely on categorical or ordinal fea-
tures, so real-valued features are often converted to discrete
analogs as a pre-processing step. Simple strategies, such as a
uniform partitioning of feature space, tend to perform worse
than methods such as Recursive Minimal Entropy Partition-
ing (RMEP) and error-based discretization. However, these
methods rely on (accurate) labels as part of a supervised ap-
proach to discretizing features and, in the end, do not alter
the prediction task. Label discretization, while superficially
similar, is a much different task.

Our approach most closely follows recent strategies of in-



Fig. 2: For the discrete version of head pan angle estimation,
each image, is assigned a label via a binning function.

corporating tasks beyond representation learning into an end-
to-end learning framework, such as methods for simultaneous
representation and image clustering [17, 18]. In the next sec-
tion, we describe our joint approach for representation learn-
ing and label discretization.

2. METHOD

For head pose estimation from overhead cameras, training
data is typically collected in calibrated, multi-camera envi-
ronments with additional sensors (e.g., head trackers, depth
cameras), which provide high-resolution head pose estimates,
υ. However, in the field, images typically lack the level of
detail needed for fine-grained head pose estimates. For the
discrete, coarse version (Figure 2), the goal is to predict y =
σ(υ; Φ), where y ∈ Y is a one-hot encoded vector of length
B, corresponding to a bin in the discretized pose space, and
σ : Υ × <B → Y is the binning function, with thresholds,
Φ. Previous methods using discretized labels typically em-
ploy binning functions that evenly divide the pose space or
are otherwise arbitrarily-defined. In this paper, we incorpo-
rate learning the binning thresholds, Φ, into the end-to-end
learning process for discrete head pose estimation.

Similar to [14] and [13], we assume that head pose estima-
tion is a step in an automated human activity analysis pipeline,
and the head region of a tracked target has been roughly local-
ized. So, given a training set of head image patches, X , and
corresponding head pose parameters Υ, for a query image,
xi, the goal is to predict the discretized head pose, y′i so that
y′i ≈ σ(υi; Φ). Initially, our method considers a fine-grained
(i.e., large number of bins) classification task and alternates
between: (1) representation learning for a fixed binning func-
tion and (2) decreasing the granularity of the binning function
by merging the labels for ambiguous, adjacent bins.

2.1. Representation Learning

Let f(x; Θ) represent a deep convolutional neural network
(CNN) model with parameters, Θ. Our approach is not spe-
cific to any particular model; for fine-tuning, it is common

Fig. 3: The circles depict a binning function on a continuous,
cyclic parameter space before (left) and after (right) merging.
The feature representation shows the points colored by their
current bin assignments. In this example, points from bins 3
and 4 have the highest affinity and will be merged, or, equiv-
alently, bin threshold φ3 will be removed. (Best in color.)

to start with a network trained for a related task. We adapt
the network by setting the number of outputs to the number
of discrete labels in pose estimation, with the bin thresholds
given by Φ. In the case of head pan angle prediction, most
approaches (e.g., [5]) discretize the 360◦ angle space into
eight evenly-sized, contiguous 45◦ bins. Training the network
follows the typical supervised training approach for classifi-
cation using labeled examples, minimizing the cross-entropy
loss between the prediction and discretized parameter:

L(Θ; Φ) =
1

N

N∑
i=1

H (y′i, σ(υi; Φ)) (1)

2.2. Label Discretization

The second stage of our approach follows the merging step
of agglomerative clustering, where a dataset of N items is it-
eratively merged into a smaller number of clusters. Initially,
each data item is its own cluster and the primary computation
is calculating the affinity, A(Ca, Cb), between pairs of clus-
ters, which characterizes the “closeness” of two point sets. At
each iteration, clusters with maximum affinity are merged.

We adapt the merging step of agglomerative clustering to
a supervised setting. Our feature representation for each ex-
ample, xi, is the output of the network, yi = f(xi,Θ), a
B-dimensional vector. Each example is assigned to one of B
clusters, corresponding to the ground-truth label and binning
thresholds, y = σ(υ; Φ). Under this formulation, the affinity
function, which measures cluster closeness, also serves as a
measure of prediction ambiguity. That is, two clusters with
high affinity correspond to examples from two different dis-
crete labels (i.e., bins) which are assigned similar output rep-
resentations by the network. High affinity clusters are good
candidates to merge since the network cannot disambiguate
the input examples.

Figure 3 demonstrates the merging process for a case
where the original parameter is continuous and cyclic (e.g.,
head pan angle). This figure depicts both the binning function
and the distribution of examples in feature space. Unlike the
general case of clustering, for our problem, at each iteration,



it is not necessary to consider all O(B2) pairwise affinities,
but only those of adjacent bins, which can be represented
by the B bin thresholds incident to the adjacent bins. Many
affinity measures have been proposed (e.g., [19, 20]). Em-
pirically, we observed that different affinity functions yielded
similar results. In our experiments, we used average-link
clustering with the L2 distance.

2.3. Algorithm

Essentially, our approach alternates between solving for clas-
sifier weights, Θ, with fixed binning thresholds, Φ, then up-
dating the binning thresholds by merging. These steps iterate
until the stopping criteria are met (e.g., desired number of
bins). Algorithm 1 outlines our method.

Algorithm 1: Label Discretization
Input: labeled images, X ; associated labels, Υ
Output: network weights, Θ; bin thresholds, Φ

1 Initialize Θ0 and Φ0

2 for t in 1 . . . T do
3 Θt ← arg minΘ L(Θ,Φt−1) (Sec. 2.1)
4 Let Cj ≡ {y′i|yi[j] = 1}
5 m← arg maxj A(Cj , Cj+1) (Sec. 2.2)
6 Φt ← Φt−1 \ φm
7 Θ← ΘT

8 Φ← ΦT

The network weights, Θ0 can be initialized with weights
from a similar problem or from scratch. For the initial bin
thresholds, Φ0, we start with a relatively large number (i.e.,
100s) of evenly-distributed bins as an initial fine-grained par-
titioning. For each iteration, t, the network is fine-tuned start-
ing with the previous settings, Θt−1. To reduce the number
of times the network is retrained, we perform multiple merge
steps (Lines 4-6 in Alg. 1) for each iteration of training the
network. In Section 3, we evaluate the effect of these opti-
mizations and the overall classification accuracy of our ap-
proach on the problem of head pose estimation from images.

3. RESULTS

We evaluate our method on DPOSE [4], a publicly-available
dataset for head pose estimation, consisting of roughly
150,000 frames of 15 moving people captured by 4 cali-
brated cameras. These experiments focus on head pan angle
estimation from roughly localized head image patches. The
DPOSE data was split with images from 12 actors used for
training and 3 used for testing.

The CNN was initialized following [21], a network de-
signed for age estimation from facial images with three pairs
of convolutional and max-pooling layers followed by three
fully connected layers. We selected this CNN because it had

Ours Exemplar Hyperface HPE
All 68.09% 58.52% 17.30% 10.83%
Forward 75.51% 61.45% 32.88% 20.64%

Table 1: Classification accuracy for discrete head pan angle
estimation on DPOSE data on both the full test and forward-
facing subjects. Each bin represents a 45◦ range of angles.

Fig. 4: Sample head pan prediction results. Glyphs show the
pan angle prediction (0◦ pointed down, correct is green) for
Ours, Exemplar, Hyperface, and HPE, respectively.

been trained with many facial images [22]; however, our ap-
proach could be applied to other related networks (e.g., [23])
or trained from scratch with sufficient data.

Our method was implemented in Python with Caffe [24]
and trained on a standard PC with an NVIDIA K40 GPU.
Input images were scaled to 227 × 227. Meta-parameters
were selected by cross-validation on the training set. We used
stochastic gradient descent (SGD) optimization with a learn-
ing rate of 0.0005 with a 10x multiplier on the last layer and
a batch size of 250. Initially, training lasted 8 epochs. Post-
merging rounds of training lasted 4 epochs.

3.1. Discrete Head Pose Estimation

To establish a baseline for the discrete classification, we com-
pare our model to three recent methods for head pose esti-
mation on an 8-way discrete classification task with evenly-
divided bins: (1) Exemplar [14], which trains an ensem-
ble of local exemplar SVM classifiers; (2) Hyperface [10],
a multi-task CNN that incorporates fused features; and (3)
HPE [6], which relies on probabilistic high-dimensional re-
gression. Exemplar was trained with the same data as our
baseline model, while Hyperface and HPE use pre-trained
models. Table 1 shows the results for the 8-way classifica-
tion task. Our method results in the highest accuracy for this
task. Both Hyperface and HPE rely on face detection, so
they fail in the case of rear-facing subjects. The second col-
umn of Table 1 shows the classification results using only test
subjects corresponding to the 4 forward-facing bins, repre-
senting pan angles [−90, 90]. While the classification accu-
racy improves for all methods, the overall performance of
Hyperface and HPE is still modest compared to our ap-
proach and Exemplar. We observed that face localization,
which is an explicit step in these two methods, often failed
in the case of low-resolution images, even for forward-facing
subjects. Figure 4 shows example test images and predictions
from each method.



Merges 1 2 4 8 16
Accuracy 78.16% 83.39% 79.52% 76.56% 75.37%
Time 32h 16h 8.5h 4.6h 2.7h

Table 2: Classification performance and approximate algo-
rithm run-time as the number of label merges per feature
learning step increases.

Method Accuracy Precision Recall
Fixed labels 68.09% 69.10% 67.35%
Learned labels 79.52% 74.83% 74.64%

Table 3: Classification performance for our learned dis-
cretization approach.

3.2. Learned Discretization

Most discretization schemes for this task use 8 bins (most
likely to correspond with the 8 cardinal and inter-cardinal di-
rections), so we use B = 8 as our discretization parameter.
Additionally, to reduce the amount of computation, we fol-
low a typical pre-processing step in aggolomerative clustering
with large data sets and perform an initial merging of nearby
examples. In the case of discretizing labels, this corresponds
to defining the initial bin thresholds, Φ0; we divide the 360◦

degree label space into 90 evenly-spaced bins of 4◦ each.
The primary meta-parameter to our approach is the num-

ber of steps of merging per round of re-training of the net-
work, which reflects a trade-off between computational effi-
ciency and accuracy of the resulting model. Table 2 shows
the classification accuracy and approximate run-time of the
method for an increasing number of merges per round of
training. We selected 4 merge operations per training step, as
it provided the best balance of accuracy and efficiency.

Table 3 shows the classification results using learned la-
bels. Compared to the fixed approach, learned discretization
results in bins of unequal size in parameter space and unequal
numbers of training and testing examples in each class. To
account for the imbalanced class issues, we report multi-class
precision and recall (with macroaveraging). Overall, the gains
with learned labels are consistent across all three metrics.

Fig. 5: (Top) Iterative label discretization from the initial
(left) to final (right) states. (Bottom) Classification accuracy
(green) during training compared to chance (blue).

Fig. 6: The left images were assigned to a different bin than
the right images by our learning process.

3.3. Discussion

Figure 5 shows snapshots of the iterative label merging pro-
cess for one experiment and the evolution of test accuracy
throughout the training process of merging bins. Due to the
randomness inherent in many of the steps of our method, the
learned bin thresholds (and image features) vary across dif-
ferent runs. However, for the task of head pan angle esti-
mation, the distribution follows a similar pattern where rear-
facing poses are more coarsely predicted than forward-facing
poses. The angles represented at the learned bin edges tend
to correspond to significant visual changes in the images. For
example, Figure 6 shows example images on either side of
a learned bin threshold. One potential explanation for learn-
ing this threshold could be that the change in visibility of the
subject’s right eye served as a discriminative visual feature.
Examining visualizations of the network activations for bor-
derline images may provide additional insight.

One observation is that, compared to the baseline CNN
trained on the evenly-distributed fixed bins, our approach ex-
ecutes significantly more epochs of training over the course of
the iterative merging and re-training stages. To examine this
issue, we trained the initial network using the final learned
bin labels with the same number of training epochs as our
baseline CNN. The resulting network performed on par with
the network learned after our iterative approach, suggesting
that the bin thresholds, rather than the additional training it-
erations, leads to the increased prediction accuracy that is ob-
served.

4. CONCLUSIONS AND FUTURE WORK

We demonstrated that classification performance could be
improved using a novel data-driven approach to label dis-
cretization. Setting arbitrary discretization thresholds ignores
the natural discontinuities in the image appearance. This ap-
proach is sufficiently general and could be applied to other
learning-based vision problems where real-world phenomena
are arbitrarily discretized, such as age or cloudiness estima-
tion. One limitation to our approach is that (like other clus-
tering methods) the number of target labels is pre-specified.
We plan to investigate information-theoretic approaches to
computing the optimal number of discrete labels as part of
the learning process. Additionally, we plan to reformulate our
multi-stage approach into an end-to-end recurrent framework.
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