
Implementation of DomCAT: The Domain Complexity
Analysis Tool for Natural Language Dialog Processing

 Shannon Duvall
Elon University

Box 2189
Elon, University 27244

336-278-6232
sduvall2@elon.edu

ABSTRACT
While dialog system technology is advancing, there is a lack of
theory allowing the vastly different domains for systems to be
compared. As a result, all predictions of the cost of building a
new dialog system must be made by a dialog expert based on
intuition and experience. Recently it has been proposed that
entropy can be used as a complexity measure for dialog systems.
These calculations would require domain specifications and
understanding of information theory. This paper introduces the
Domain Complexity Analysis Tool, or DomCAT. With this
tool, anyone with basic knowledge of dialog systems can
calculate system complexities and create new dialog domain
specifications, and dialog complexity calculations can become
standard for the field.

Categories and Subject Descriptors
I.2.7 Natural Language Processing E.4 Coding and Information
Theory D0. General Software.

General Terms
Management, Measurement, Design.

Keywords
Dialog Processing, Complexity.
1. INTRODUCTION
Dialog systems can differ in many ways,
including type of interaction (cooperating on a
task, asking for a service, explaining, etc...),
length of typical dialogs, and degree of mixed
initiative. Having such a wide variety of dialog
systems makes them widely applicable but has
several drawbacks. It is difficult to compare the
performance of systems because the tasks they

take on are different [2], [3], [5], [9]. This
makes it particularly difficult for companies that
would like to implement natural language dialog
interfaces to predict how long a system will take
to implement or how well the final system can
be expected to work.

A measure of complexity for dialog system
domains is a quantity that gives the difficulty of
the dialog task, similar to time and space
complexity for algorithms. With a complexity
measure, new proposed systems can be
compared to existing ones, predicting the
expected performance of the finished product.
Complexity provides a basis for studying and
making claims about the scalability,
predictability and robustness of dialog systems.
Some complexity measures for dialog
processing based on entropy have been
proposed but are not yet widely used [7].

This work describes the Domain Complexity
Analysis Tool (DomCAT). With this tool, the
entropy of the set of possible user utterances can
be easily calculated before or after system
implementation and used as a dialog complexity
measure. The complexity can be calculated
based on either a corpus or a grammar. In
addition, the tool can be used to guide the user
in the creation of a new domain. System
analyses for new domains can be completed and
the complexity compared to existing dialog
systems. Using DomCAT, all of this can be
done without expert knowledge of either
information theory or dialog processing.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Richard Tapia Celebration of Diversity in Computing Conference’07,
October 14–17, 2007, Orlando, Florida, USA.

Copyright 2007 ACM 1-58113-000-0/00/0004…$5.00.

2. ENTROPY AS COMPLEXITY
Entropy has long been used in natural language
processing as a measure of syntactic
complexity, and it has recently been proposed as
a measure of semantic and ambiguity
complexity as well [7]. Entropy is the number
of bits per symbol that are required to transmit
information. Dialog complexity, then, is the
expected bits of information per utterance
transmitted from the user to the computer.

For a domain with sentences S = {s1, s2, ..., sn}
and semantic forms M={m1, m2, …, mk} the
syntactic complexity(SynC), semantic
complexity (SemC) and ambiguity complexity
(AmbC) of the domain are defined as follows
[7]:

!

SynC = " p(si
i=1

n

)lg(p(si))

!

SemC = " p(mi

i=1

k

)lg(p(mi))

!

AmbC = "
i=1

n

p(si)
j=1

k

p(m j | si)lg(p(m j
| si))

$

%
&
&

'

(
)
)

Calculating these complexity values for a dialog
domain requires defining all possible user
utterances as well as the probability of each.
The DomCAT tool gives a way to calculate the
entropy based on a corpus of user interaction or
a probabilistic grammar of syntactic and
semantic forms1. In addition, the tool provides a
way to aid a new dialog system-builder in
creating the semantic and syntactic sets from
sample dialog.

3. DomCAT FUNCTIONALITY
The DomCAT system implements the entropy
calculations described above as well as aiding in

1 Discussion of these algorithms is beyond the scope of this

paper.

creating the domain syntax and semantics. As
the syntax and semantics are defined, the
complexity is updated for comparison with other
implemented systems and their corresponding
evaluation measures. This tool allows the
complexity theory to be put immediately into
practice in analyzing domains, and the analyses
can be completed without expert knowledge of
the entropy calculations.

The tool can be used with whatever starting data
the system builder has available. This could be
a Complexity Grammar, which is a simple
stochastic context-free grammar that can
represent either semantics or syntax for a dialog
system [7]. A corpus of actual or imagined
system use may also be available. If no data at
all is available, either of these can be built using
DomCAT.

There are two ways to calculate the domain
complexities described. A corpus can be used
as a representative sample of the syntactic and
semantic forms available in the domain. These
calculations are straightforward from the
definitions of complexity. The complexity of
the domain can also be calculated based on
grammars of the syntax and semantics in the
domain. This is especially useful when the
system is still in the developmental stages.

The system is started in grammar display mode.
The analyst can load a completed Complexity
Grammar into the program and calculate its
complexity automatically, as seen in Figure 1.
Notice that each line tells the complexity of that
semantic grammar rule, and the complexity of
the overall domain is the complexity of the start
rule. If the analyst wants to change the existing
grammar or to create a new one, he can enter the
grammar building mode. The program prompts
the analyst for a corpus of user statements for
the domain. The system aids the analyst in
creating semantics or syntax rules of the user

statement and calculates probabilities of the
rules based on the corpus. In this way, the
dialog complexity calculations can be done with
as little expert knowledge as possible.

Figure 1: Grammar Display Mode

Figure 2: Grammar Building Mode

After creating the grammar, the system will
switch back into the grammar display mode to
calculate the resulting complexity. At any point
a grammar can be loaded and then amended.
The grammar that is already loaded is used as a
starting point in the building process, and more
sentences can be read in. The result is a system
that can be used to incrementally approach the
most accurate complexity given more and more

information. To test its functionality, the
DomCAT program was used to analyze several
domains of existing dialog systems.
4. COMPLEXITY RESULTS
One of the benefits of DomCAT and the
entropy-based measure of complexity is the
ability to compare very different dialog systems
based on whatever data is available. We have
calculated the complexity of several domains
according to the data available: either corpus-
based or grammar-based, syntactic or semantic,
human-human or human-computer.

The dialog systems that have been analyzed
include the Duke Programming Tutor [6], an
interactive, multi-media system that helps
students learn to program in Pascal. The data for
this system was from a Wizard of Oz
experiment, meaning that the computer’s
statements in the dialog are actually controlled
by a person without the user’s knowledge. The
next system analyzed is the JUST-TALK system
[4], a dialog system used to train police officers
to interact effectively with people with mental
illness. The Circuit Fix-it Shop [8] is a spoken
dialog system in which the computer aids in the
repair of a toy circuit. The computer has
information about wire configuration, voltages,
and settings for making the circuit work
correctly. Finally, we analyzed a pseudo-
Wizard of Oz corpus from TRAINS-95 [1].
This dialog system asks the user to complete a
routing of train cars and cargo. A pseudo-
Wizard of Oz dialog is similar to a Wizard of
Oz setup, but the user understands that he is
speaking with another person.

To compare the systems, we created semantic
Complexity Grammars for each system. The
results, along with the types of available data,
are given in Figure 3. The results show that the
DomCAT system can be used to analyze real,
sizeable dialog systems. These values can be

used as a basis of comparison for other dialog
systems.

Dialog
System

Available
Data

Complexity

Pascal Tutor Wizard-of-Oz
transcripts

6.067

JUST-TALK System
transcripts
with
semantics

9.096

Circuit Fix-it
Shop

Syntax-to-
semantics
grammar and
system
transcripts

14.054

TRAINS Pseudo-
Wizard-of-Oz
transcripts

16.217

Figure 3: Semantic Grammar-based
Complexity Results

5. CONCLUSION
The area of dialog systems can greatly benefit
from a theoretical framework to compare
systems and evaluation results. The entropy-
based complexity measures can provide this
framework, and the DomCAT system allows
these complexity values to be calculated easily,
with no knowledge of information theory and
basic knowledge of dialog processing.

6. REFERENCES
[1] Allen, J., Ferguson, G., Miller, B., and

Ringger, E. Spoken dialogue and interactive
planning. Proceedings of the ARPA Spoken
Language Systems Technology Workshop
(SLST), 1995.

[2] Bates, M., and Aguso, D. A proposal for
incremental dialogue evaluation.

Proceedings of the Speech and Natural
Language Workshop, 1991, 319-322.

[3] Charfuelan, M., Lopez, C., Gril J.,
Rodriguez, C., and Gomez, L. A general
framework to assess spoken language
dialogue systems: Experience with call
center agent systems. Proceedings of the
Conference on Natural Language
Processing Workshop on Robust Methods in
Analysis of Natural Language Data. 2000.

[4] Frank, G., Guinn, C., and Hubal, R. JUST-
TALK: An application of responsive virtual
human technology. Proceedings of the 24th
Intersevice/Industrial Training, Simulation,
and Education Conference, 2002.

[5] James, F., Rayner, M., and Hockey, B. “Do
that again”: Evaluating speech dialogue
interfaces. Technical Report 00.06,
Research Institute for Advanced Computer
Science, 2000.

[6] Keim, G., Fulkerson, M., and Biermann, A.
Initiative in tutorial dialogue systems.
Proceedings of the American Association for
Artificial Intelligence (AAAI) Spring
Symposium on Computational Models for
Mixed-Initiative Interaction, 1997.

[7] Pollard, S. Defining the Complexity of
Natural Language Dialog System Domains.
Ph.D. Thesis, Duke University, Durham,
NC, 2006.

[8] Smith, R. and Hipp, D. Spoken Natural
Language Dialog Systems: A Practical
Approach. Oxford University Press, NY,
1994.

[9] Walker, M., Litman, D., Kamm, C., and
Abella, A. PARADISE: A framework for
evaluating spoken dialogue agents.
Proceedings of the 1997 Meeting of the
Association for Computational Linguistics
and European Chapter of the Association
for Computational Linguistics (ACL/EACL),
2000, 28-34.

