This chapter is devoted to analysis of algorithms. The *American Heritage Dictionary* defines “analysis” as “the separation of an intellectual or substantial whole into its constituent parts for individual study.” Accordingly, each of the principal dimensions of an algorithm pointed out in Section 1.2 is both a legitimate and desirable subject of study. But the term “analysis of algorithms” is usually used in a narrower, technical sense to mean an investigation of an algorithm’s efficiency with respect to two resources: running time and memory space. This emphasis on efficiency is easy to explain. First, unlike such dimensions as simplicity and generality, efficiency can be studied in precise quantitative terms. Second, one can argue—although this is hardly always the case, given the speed and memory of today’s computers—that the efficiency considerations are of primary importance from a practical point of view. In this chapter, we too will limit the discussion to an algorithm’s efficiency.
We start with a general framework for analyzing algorithm efficiency in Section 2.1. This section is arguably the most important in the chapter; the fundamental nature of the topic makes it also one of the most important sections in the entire book.

In Section 2.2, we introduce three notations: \(O \) (“big oh”), \(\Omega \) (“big omega”), and \(\Theta \) (“big theta”). Borrowed from mathematics, these notations have become the language for discussing the efficiency of algorithms.

In Section 2.3, we show how the general framework outlined in Section 2.1 can be systematically applied to analyzing the efficiency of nonrecursive algorithms. The main tool of such an analysis is setting up a sum representing the algorithm’s running time and then simplifying the sum by using standard sum manipulation techniques.

In Section 2.4, we show how the general framework outlined in Section 2.1 can be systematically applied to analyzing the efficiency of recursive algorithms. Here, the main tool is not a summation but a special kind of equation called a recurrence relation. We explain how such recurrence relations can be set up and then introduce a method for solving them.

Although we illustrate the analysis framework and the methods of its applications by a variety of examples in the first four sections of this chapter, Section 2.5 is devoted to yet another example—that of the Fibonacci numbers. Discovered 800 years ago, this remarkable sequence appears in a variety of applications both within and outside computer science. A discussion of the Fibonacci sequence serves as a natural vehicle for introducing an important class of recurrence relations not solvable by the method of Section 2.4. We also discuss several algorithms for computing the Fibonacci numbers, mostly for the sake of a few general observations about the efficiency of algorithms and methods of analyzing them.

The methods of Sections 2.3 and 2.4 provide a powerful technique for analyzing the efficiency of many algorithms with mathematical clarity and precision, but these methods are far from being foolproof. The last two sections of the chapter deal with two approaches—empirical analysis and algorithm visualization—that complement the pure mathematical techniques of Sections 2.3 and 2.4. Much newer and, hence, less developed than their mathematical counterparts, these approaches promise to play an important role among the tools available for analysis of algorithm efficiency.

2.1 The Analysis Framework

In this section, we outline a general framework for analyzing the efficiency of algorithms. We already mentioned in Section 1.2 that there are two kinds of efficiency: time efficiency and space efficiency. **Time efficiency**, also called **time complexity**, indicates how fast an algorithm in question runs. **Space efficiency**, also called **space complexity**, refers to the amount of memory units required by the algorithm in addition to the space needed for its input and output. In the early days of electronic computing, both resources—time and space—were at a premium. Half a century
of relentless technological innovations have improved the computer’s speed and memory size by many orders of magnitude. Now the amount of extra space required by an algorithm is typically not of as much concern, with the caveat that there is still, of course, a difference between the fast main memory, the slower secondary memory, and the cache. The time issue has not diminished quite to the same extent, however. In addition, the research experience has shown that for most problems, we can achieve much more spectacular progress in speed than in space. Therefore, following a well-established tradition of algorithm textbooks, we primarily concentrate on time efficiency, but the analytical framework introduced here is applicable to analyzing space efficiency as well.

Measuring an Input’s Size

Let’s start with the obvious observation that almost all algorithms run longer on larger inputs. For example, it takes longer to sort larger arrays, multiply larger matrices, and so on. Therefore, it is logical to investigate an algorithm’s efficiency as a function of some parameter \(n \) indicating the algorithm’s input size. In most cases, selecting such a parameter is quite straightforward. For example, it will be the size of the list for problems of sorting, searching, finding the list’s smallest element, and most other problems dealing with lists. For the problem of evaluating a polynomial \(p(x) = a_n x^n + \ldots + a_0 \) of degree \(n \), it will be the polynomial’s degree or the number of its coefficients, which is larger by 1 than its degree. You’ll see from the discussion that such a minor difference is inconsequential for the efficiency analysis.

There are situations, of course, where the choice of a parameter indicating an input size does matter. One such example is computing the product of two \(n \times n \) matrices. There are two natural measures of size for this problem. The first and more frequently used is the matrix order \(n \). But the other natural contender is the total number of elements \(N \) in the matrices being multiplied. (The latter is also more general since it is applicable to matrices that are not necessarily square.) Since there is a simple formula relating these two measures, we can easily switch from one to the other, but the answer about an algorithm’s efficiency will be qualitatively different depending on which of these two measures we use (see Problem 2 in this section’s exercises).

The choice of an appropriate size metric can be influenced by operations of the algorithm in question. For example, how should we measure an input’s size for a spell-checking algorithm? If the algorithm examines individual characters of its input, we should measure the size by the number of characters; if it works by processing words, we should count their number in the input.

We should make a special note about measuring input size for algorithms solving problems such as checking primality of a positive integer \(n \). Here, the input is just one number, and it is this number’s magnitude that determines the input

1. Some algorithms require more than one parameter to indicate the size of their inputs (e.g., the number of vertices and the number of edges for algorithms on graphs represented by their adjacency lists).
size. In such situations, it is preferable to measure size by the number \(b \) of bits in
the \(n \)'s binary representation:

\[
b = \lceil \log_2 n \rceil + 1. \tag{2.1}
\]

This metric usually gives a better idea about the efficiency of algorithms in ques-
tion.

Units for Measuring Running Time

The next issue concerns units for measuring an algorithm's running time. Of
course, we can simply use some standard unit of time measurement—a second,
or millisecond, and so on—to measure the running time of a program implemen-
ting the algorithm. There are obvious drawbacks to such an approach, however:
dependence on the speed of a particular computer, dependence on the quality of
a program implementing the algorithm and of the compiler used in generating the
machine code, and the difficulty of clocking the actual running time of the pro-
gram. Since we are after a measure of an algorithm's efficiency, we would like to
have a metric that does not depend on these extraneous factors.

One possible approach is to count the number of times each of the algorithm's
operations is executed. This approach is both excessively difficult and, as we
shall see, usually unnecessary. The thing to do is to identify the most important
operation of the algorithm, called the *basic operation*, the operation contribut-
ing the most to the total running time, and compute the number of times the basic
operation is executed.

As a rule, it is not difficult to identify the basic operation of an algorithm: it is
usually the most time-consuming operation in the algorithm's innermost loop.
For example, most sorting algorithms work by comparing elements (keys) of a
list being sorted with each other; for such algorithms, the basic operation is a key
comparison. As another example, algorithms for mathematical problems typically
involve some or all of the four arithmetical operations: addition, subtraction,
multiplication, and division. Of the four, the most time-consuming operation is
division, followed by multiplication and then addition and subtraction, with the
last two usually considered together.\(^2\)

Thus, the established framework for the analysis of an algorithm’s time ef-
ficiency suggests measuring it by counting the number of times the algorithm's
basic operation is executed. We will find out how to compute such a count for
nonrecursive and recursive algorithms in Sections 2.3 and 2.4, respectively.

Here is an important application. Let \(c_{op} \) be the execution time of an algo-
rithm's basic operation on a particular computer, and let \(C(n) \) be the number of
times this operation needs to be executed for this algorithm. Then we can estimate

\(^2\) On some computers, multiplication does not take longer than addition/subtraction (see, for example, the timing data provided by Kernighan and Plaug in [Ker99, pp. 185–186]).
2.1 The Analysis Framework

The running time \(T(n) \) of a program implementing this algorithm on that computer by the formula

\[
T(n) \approx c_{op} C(n).
\]

Of course, this formula should be used with caution. The count \(C(n) \) does not contain any information about operations that are not basic, and, in fact, the count itself is often computed only approximately. Further, the constant \(c_{op} \) is also an approximation whose reliability is not always easy to assess. Still, unless \(n \) is extremely large or very small, the formula can give a reasonable estimate of the algorithm’s running time. It also makes it possible to answer such questions as “How much faster would this algorithm run on a machine that is 10 times faster than the one we have?” The answer is, obviously, 10 times. Or, assuming that \(C(n) = \frac{1}{2} n(n - 1) \), how much longer will the algorithm run if we double its input size? The answer is about four times longer. Indeed, for all but very small values of \(n \),

\[
C(n) = \frac{1}{2} n(n - 1) = \frac{1}{2} n^2 - \frac{1}{2} n
\]

and therefore

\[
\frac{T(2n)}{T(n)} = \frac{c_{op} C(2n)}{c_{op} C(n)} = \frac{1}{2} (2n)^2 = 4.
\]

Note that we were able to answer the last question without actually knowing the value of \(c_{op} \); it was neatly cancelled out in the ratio. Also note that \(\frac{1}{2} \), the multiplicative constant in the formula for the count \(C(n) \), was also cancelled out. It is for these reasons that the efficiency analysis framework ignores multiplicative constants and concentrates on the count’s order of growth to within a constant multiple for large-size inputs.

Orders of Growth

Why this emphasis on the count’s order of growth for large input sizes? A difference in running times on small inputs is not what really distinguishes efficient algorithms from inefficient ones. When we have to compute, for example, the greatest common divisor of two small numbers, it is not immediately clear how much more efficient Euclid’s algorithm is compared to the other two algorithms discussed in Section 1.1 or even why we should care which of them is faster and by how much. It is only when we have to find the greatest common divisor of two large numbers that the difference in algorithm efficiencies becomes both clear and important. For large values of \(n \), it is the function’s order of growth that counts; just look at Table 2.1, which contains values of a few functions particularly important for analysis of algorithms.

The magnitude of the numbers in Table 2.1 has a profound significance for the analysis of algorithms. The function growing the slowest among these is the logarithmic function. It grows so slowly, in fact, that we should expect a program
implementing an algorithm with a logarithmic basic-operation count to run practically instantaneously on inputs of all realistic sizes. Also note that although specific values of such a count depend, of course, on the logarithm’s base, the formula

$$\log_a n = \log_b n \cdot \log_a b$$

makes it possible to switch from one base to another, leaving the count logarithmic but with a new multiplicative constant. This is why we omit a logarithm’s base and write simply $\log n$ in situations where we are interested just in a function’s order of growth to within a multiplicative constant.

On the other end of the spectrum are the exponential function 2^n and the factorial function $n!$. Both these functions grow so fast that their values become astronomically large even for rather small values of n. (This is the reason why we did not include their values for $n > 10^3$ in Table 2.1.) For example, it would take about $4 \cdot 10^{30}$ years for a computer making a trillion (10^{12}) operations per second to execute 2^{100} operations. Though this is incomparably faster than it would have taken to execute $100!$ operations, it is still longer than 4.5 billion ($4.5 \cdot 10^9$) years—the estimated age of the planet Earth. There is a tremendous difference between the orders of growth of the functions 2^n and $n!$, yet both are often referred to as “exponential-growth functions” (or simply “exponential”) despite the fact that, strictly speaking, only the former should be referred to as such. The bottom line, which is important to remember, is this:

Algorithms that require an exponential number of operations are practical for solving only problems of very small sizes.

Another way to appreciate the qualitative difference among the orders of growth of the functions in Table 2.1 is to consider how they react to, say, a twofold increase in the value of their argument n. The function $\log_2 n$ increases in value by just 1 (because $\log_2 2n = \log_2 2 + \log_2 n = 1 + \log_2 n$); the linear function increases twofold; the linearithmic function $n \log_2 n$ increases slightly more than twofold; the quadratic function n^2 and cubic function n^3 increase fourfold and
eightfold, respectively (because \(2n^2 = 4n^2\) and \(2n^3 = 8n^3\)); the value of \(2^n\) gets squared (because \(2^{2n} = (2^n)^2\)); and \(n!\) increases much more than that (yes, even mathematics refuses to cooperate to give a neat answer for \(n!\)).

Worst-Case, Best-Case, and Average-Case Efficiencies

In the beginning of this section, we established that it is reasonable to measure an algorithm’s efficiency as a function of a parameter indicating the size of the algorithm’s input. But there are many algorithms for which running time depends not only on an input size but also on the specifics of a particular input. Consider, as an example, sequential search. This is a straightforward algorithm that searches for a given item (some search key \(K\)) in a list of \(n\) elements by checking successive elements of the list until either a match with the search key is found or the list is exhausted. Here is the algorithm’s pseudocode, in which, for simplicity, a list is implemented as an array. It also assumes that the second condition \(A[i] \neq K\) will not be checked if the first one, which checks that the array’s index does not exceed its upper bound, fails.

ALGORITHM SequentialSearch(A[0..n-1], K)

// Searches for a given value in a given array by sequential search
// Input: An array A[0..n-1] and a search key K
// Output: The index of the first element in A that matches K
// or -1 if there are no matching elements
i ← 0
while i < n and A[i] ≠ K do
 i ← i + 1
if i < n return i
else return -1

Clearly, the running time of this algorithm can be quite different for the same list size \(n\). In the worst case, when there are no matching elements or the first matching element happens to be the last one on the list, the algorithm makes the largest number of key comparisons among all possible inputs of size \(n\): \(C_{\text{worst}}(n) = n\).

The **worst-case efficiency** of an algorithm is its efficiency for the worst-case input of size \(n\), which is an input (or inputs) of size \(n\) for which the algorithm runs the longest among all possible inputs of that size. The way to determine the worst-case efficiency of an algorithm is, in principle, quite straightforward: analyze the algorithm to see what kind of inputs yield the largest value of the basic operation’s count \(C(n)\) among all possible inputs of size \(n\) and then compute this worst-case value \(C_{\text{worst}}(n)\). (For sequential search, the answer was obvious. The methods for handling less trivial situations are explained in subsequent sections of this chapter.) Clearly, the worst-case analysis provides very important information about an algorithm’s efficiency by bounding its running time from above. In other
words, it guarantees that for any instance of size \(n \), the running time will not exceed \(C_{\text{worst}}(n) \), its running time on the worst-case inputs.

The **best-case efficiency** of an algorithm is its efficiency for the best-case input of size \(n \), which is an input (or inputs) of size \(n \) for which the algorithm runs the fastest among all possible inputs of that size. Accordingly, we can analyze the best-case efficiency as follows. First, we determine the kind of inputs for which the count \(C(n) \) will be the smallest among all possible inputs of size \(n \). (Note that the best case does not mean the smallest input; it means the input of size \(n \) for which the algorithm runs the fastest.) Then we ascertain the value of \(C(n) \) on these most convenient inputs. For example, the best-case inputs for sequential search are lists of size \(n \) with their first element equal to a search key; accordingly, \(C_{\text{best}}(n) = 1 \) for this algorithm.

The analysis of the best-case efficiency is not nearly as important as that of the worst-case efficiency. But it is not completely useless, either. Though we should not expect to get best-case inputs, we might be able to take advantage of the fact that for some algorithms a good best-case performance extends to some useful types of inputs close to being the best-case ones. For example, there is a sorting algorithm (insertion sort) for which the best-case inputs are already sorted arrays on which the algorithm works very fast. Moreover, the best-case efficiency deteriorates only slightly for almost-sorted arrays. Therefore, such an algorithm might well be the method of choice for applications dealing with almost-sorted arrays. And, of course, if the best-case efficiency of an algorithm is unsatisfactory, we can immediately discard it without further analysis.

It should be clear from our discussion, however, that neither the worst-case analysis nor its best-case counterpart yields the necessary information about an algorithm's behavior on a "typical" or "random" input. This is the information that the **average-case efficiency** seeks to provide. To analyze the algorithm's average-case efficiency, we must make some assumptions about possible inputs of size \(n \).

Let's consider again sequential search. The standard assumptions are that (a) the probability of a successful search is equal to \(p \) (0 \(\leq \) \(p \) \(\leq \) 1) and (b) the probability of the first match occurring in the \(i \)th position of the list is the same for every \(i \). Under these assumptions—the validity of which is usually difficult to verify, their reasonableness notwithstanding—we can find the average number of key comparisons \(C_{\text{avg}}(n) \) as follows. In the case of a successful search, the probability of the first match occurring in the \(i \)th position of the list is \(p/n \) for every \(i \), and the number of comparisons made by the algorithm in such a situation is obviously \(i \). In the case of an unsuccessful search, the number of comparisons will be \(n \) with the probability of such a search being \((1 - p) \). Therefore,

\[
C_{\text{avg}}(n) = \frac{1}{n} \sum_{i=1}^{n} i \cdot p + \frac{1}{n} \sum_{i=1}^{n} \frac{1 - p}{n} = \frac{p}{n} \left(1 + 2 + \cdots + n\right) + (1 - p) \frac{n(n + 1)}{2}.
\]
This general formula yields some quite reasonable answers. For example, if \(p = 1 \) (the search must be successful), the average number of key comparisons made by sequential search is \((n + 1)/2\); that is, the algorithm will inspect, on average, about half of the list's elements. If \(p = 0 \) (the search must be unsuccessful), the average number of key comparisons will be \(n \) because the algorithm will inspect all \(n \) elements on all such inputs.

As you can see from this very elementary example, investigation of the average-case efficiency is considerably more difficult than investigation of the worst-case and best-case efficiencies. The direct approach for doing this involves dividing all instances of size \(n \) into several classes so that for each instance of the class the number of times the algorithm's basic operation is executed is the same. (What were these classes for sequential search?) Then a probability distribution of inputs is obtained or assumed so that the expected value of the basic operation's count can be found.

The technical implementation of this plan is rarely easy, however, and probabilistic assumptions underlying it in each particular case are usually difficult to verify. Given our quest for simplicity, we will mostly quote known results about the average-case efficiency of algorithms under discussion. If you are interested in derivations of these results, consult such books as [Baa00], [Sed96], [KnuI], [KnuII], and [KnuIII].

It should be clear from the preceding discussion that the average-case efficiency cannot be obtained by taking the average of the worst-case and the best-case efficiencies. Even though this average does occasionally coincide with the average-case cost, it is not a legitimate way of performing the average-case analysis.

Does one really need the average-case efficiency information? The answer is unequivocally yes: there are many important algorithms for which the average-case efficiency is much better than the overly pessimistic worst-case efficiency would lead us to believe. So, without the average-case analysis, computer scientists could have missed many important algorithms.

Yet another type of efficiency is called amortized efficiency. It applies not to a single run of an algorithm but rather to a sequence of operations performed on the same data structure. It turns out that in some situations a single operation can be expensive, but the total time for an entire sequence of \(n \) such operations is always significantly better than the worst-case efficiency of that single operation multiplied by \(n \). So we can “amortize” the high cost of such a worst-case occurrence over the entire sequence in a manner similar to the way a business would amortize the cost of an expensive item over the years of the item's productive life. This sophisticated approach was discovered by the American computer scientist Robert Tarjan, who used it, among other applications, in developing an interesting variation of the classic binary search tree (see [Tar87] for a quite readable nontechnical discussion and [Tar85] for a technical account). We will see an example of the usefulness of amortized efficiency in Section 9.2, when we consider algorithms for finding unions of disjoint sets.
Recapitulation of the Analysis Framework

Before we leave this section, let us summarize the main points of the framework outlined above.

- Both time and space efficiencies are measured as functions of the algorithm's input size.
- Time efficiency is measured by counting the number of times the algorithm's basic operation is executed. Space efficiency is measured by counting the number of extra memory units consumed by the algorithm.
- The efficiencies of some algorithms may differ significantly for inputs of the same size. For such algorithms, we need to distinguish between the worst-case, average-case, and best-case efficiencies.
- The framework's primary interest lies in the order of growth of the algorithm's running time (extra memory units consumed) as its input size goes to infinity.

In the next section, we look at formal means to investigate orders of growth. In Sections 2.3 and 2.4, we discuss particular methods for investigating nonrecursive and recursive algorithms, respectively. It is there that you will see how the analysis framework outlined here can be applied to investigating the efficiency of specific algorithms. You will encounter many more examples throughout the rest of the book.

Exercises 2.1

1. For each of the following algorithms, indicate (i) a natural size metric for its inputs, (ii) its basic operation, and (iii) whether the basic operation count can be different for inputs of the same size:
 a. computing the sum of n numbers
 b. computing $n!$
 c. finding the largest element in a list of n numbers
 d. Euclid's algorithm
 e. sieve of Eratosthenes
 f. pen-and-pencil algorithm for multiplying two n-digit decimal integers

2. a. Consider the definition-based algorithm for adding two $n \times n$ matrices. What is its basic operation? How many times is it performed as a function of the matrix order n? As a function of the total number of elements in the input matrices?
 b. Answer the same questions for the definition-based algorithm for matrix multiplication.
3. Consider a variation of sequential search that scans a list to return the number of occurrences of a given search key in the list. Does its efficiency differ from the efficiency of classic sequential search?

4. a. *Glove selection* There are 22 gloves in a drawer: 5 pairs of red gloves, 4 pairs of yellow, and 2 pairs of green. You select the gloves in the dark and can check them only after a selection has been made. What is the smallest number of gloves you need to select to have at least one matching pair in the best case? In the worst case?

 b. *Missing socks* Imagine that after washing 5 distinct pairs of socks, you discover that two socks are missing. Of course, you would like to have the largest number of complete pairs remaining. Thus, you are left with 4 complete pairs in the best-case scenario and with 3 complete pairs in the worst case. Assuming that the probability of disappearance for each of the 10 socks is the same, find the probability of the best-case scenario; the probability of the worst-case scenario; the number of pairs you should expect in the average case.

5. a. Prove formula (2.1) for the number of bits in the binary representation of a positive decimal integer.

 b. Prove the alternative formula for the number of bits in the binary representation of a positive integer n:

 $$b = \lceil \log_2(n + 1) \rceil.$$

 c. What would be the analogous formulas for the number of decimal digits?

 d. Explain why, within the accepted analysis framework, it does not matter whether we use binary or decimal digits in measuring n’s size.

6. Suggest how any sorting algorithm can be augmented in a way to make the best-case count of its key comparisons equal to just $n - 1$ (n is a list’s size, of course). Do you think it would be a worthwhile addition to any sorting algorithm?

7. Gaussian elimination, the classic algorithm for solving systems of n linear equations in n unknowns, requires about $\frac{1}{3}n^3$ multiplications, which is the algorithm’s basic operation.

 a. How much longer should you expect Gaussian elimination to work on a system of 1000 equations versus a system of 500 equations?

 b. You are considering buying a computer that is 1000 times faster than the one you currently have. By what factor will the faster computer increase the sizes of systems solvable in the same amount of time as on the old computer?

8. For each of the following functions, indicate how much the function’s value will change if its argument is increased fourfold.

 a. $\log_2 n$
 b. \sqrt{n}
 c. n
 d. n^2
 e. n^3
 f. 2^n
9. For each of the following pairs of functions, indicate whether the first function of each of the following pairs has a lower, same, or higher order of growth (to within a constant multiple) than the second function.
 a. $n(n+1)$ and $200n^2$
 b. $10ln^2$ and $0.01n^3$
 c. $log_2 n$ and $ln n$
 d. $log_2 n$ and $log_2 n^2$
 e. 2^{n-1} and 2^n
 f. $(n-1)!$ and $n!$

10. Invention of chess
 a. According to a well-known legend, the game of chess was invented many centuries ago in northwestern India by a certain sage. When he took his invention to his king, the king liked the game so much that he offered the inventor any reward he wanted. The inventor asked for some grain to be obtained as follows: just a single grain of wheat was to be placed on the first square of the chessboard, two on the second, four on the third, eight on the fourth, and so on, until all 64 squares had been filled. If it took just 1 second to count each grain, how long would it take to count all the grain due to him?
 b. How long would it take if instead of doubling the number of grains for each square of the chessboard, the inventor asked for adding two grains?

2.2 Asymptotic Notations and Basic Efficiency Classes

As pointed out in the previous section, the efficiency analysis framework concentrates on the order of growth of an algorithm’s basic operation count as the principal indicator of the algorithm’s efficiency. To compare and rank such orders of growth, computer scientists use three notations: O (big oh), Ω (big omega), and Θ (big theta). First, we introduce these notations informally, and then, after several examples, formal definitions are given. In the following discussion, $t(n)$ and $g(n)$ can be any nonnegative functions defined on the set of natural numbers. In the context we are interested in, $t(n)$ will be an algorithm’s running time (usually indicated by its basic operation count $C(n)$), and $g(n)$ will be some simple function to compare the count with.

Informal Introduction

Informally, $O(g(n))$ is the set of all functions with a lower or same order of growth as $g(n)$ (to within a constant multiple, as n goes to infinity). Thus, to give a few examples, the following assertions are all true:

$$n \in O(n^2), \quad 100n + 5 \in O(n^2), \quad \frac{1}{2} n^{n-1} \in O(n^2).$$
Indeed, the first two functions are linear and hence have a lower order of growth than \(g(n) = n^2 \), while the last one is quadratic and hence has the same order of growth as \(n^2 \). On the other hand,

\[
\begin{align*}
 n^3 & \not\in O(n^2), \\
 0.00001n^3 & \not\in O(n^2), \\
 n^4 + n + 1 & \not\in O(n^2).
\end{align*}
\]

Indeed, the functions \(n^3 \) and \(0.00001n^3 \) are both cubic and hence have a higher order of growth than \(n^2 \), and so has the fourth-degree polynomial \(n^4 + n + 1 \).

The second notation, \(\Omega(g(n)) \), stands for the set of all functions with a higher or same order of growth as \(g(n) \) (to within a constant multiple, as \(n \) goes to infinity).

For example,

\[
\begin{align*}
 n^3 & \in \Omega(n^2), \\
 \frac{1}{2}n(n - 1) & \in \Omega(n^2), \\
 100n + 5 & \notin \Omega(n^2).
\end{align*}
\]

Finally, \(\Theta(g(n)) \) is the set of all functions that have the same order of growth as \(g(n) \) (to within a constant multiple, as \(n \) goes to infinity). Thus every quadratic function \(an^2 + bn + c \) with \(a > 0 \) is in \(\Theta(n^2) \), but so are, among infinitely many others, \(n^2 + \sin n \) and \(n^2 + \log n \). (Can you explain why?)

Hopefully, this informal introduction has made you comfortable with the idea behind the three asymptotic notations. So now come the formal definitions.

\(O \)-notation

DEFINITION A function \(t(n) \) is said to be in \(O(g(n)) \), denoted \(t(n) \in O(g(n)) \), if \(t(n) \) is bounded above by some constant multiple of \(g(n) \) for all large \(n \), i.e., if there exist some positive constant \(c \) and some nonnegative integer \(n_0 \) such that

\[
 t(n) \leq cg(n) \quad \text{for all } n \geq n_0.
\]

The definition is illustrated in Figure 2.1 where, for the sake of visual clarity, \(n \) is extended to be a real number.

As an example, let us formally prove one of the assertions made in the introduction: \(100n + 5 \in O(n^2) \). Indeed,

\[
 100n + 5 \leq 100n + n \quad \text{(for all } n \geq 5) = 101n \leq 101n^2.
\]

Thus, as values of the constants \(c \) and \(n_0 \) required by the definition, we can take 101 and 5, respectively.

Note that the definition gives us a lot of freedom in choosing specific values for constants \(c \) and \(n_0 \). For example, we could also reason that

\[
 100n + 5 \leq 100n + 5n \quad \text{(for all } n \geq 1) = 105n
\]

to complete the proof with \(c = 105 \) and \(n_0 = 1 \).
doesn't matter

cg(n)
t(n)

FIGURE 2.1 Big-oh notation: t(n) ∈ O(g(n)).

cg(n)
t(n)

FIGURE 2.2 Big-omega notation: t(n) ∈ \Omega(g(n)).

Ω-notation

DEFINITION A function \(t(n) \) is said to be in \(\Omega(g(n)) \), denoted \(t(n) \in \Omega(g(n)) \), if \(t(n) \) is bounded below by some positive constant multiple of \(g(n) \) for all large \(n \), i.e., if there exist some positive constant \(c \) and some nonnegative integer \(n_0 \) such that

\[
t(n) \geq cg(n) \quad \text{for all } n \geq n_0.
\]

The definition is illustrated in Figure 2.2.

Here is an example of the formal proof that \(n^3 \in \Omega(n^2) \):

\[
n^3 \geq n^2 \quad \text{for all } n \geq 0,
\]

i.e., we can select \(c = 1 \) and \(n_0 = 0 \).
Asymptotic Notations and Basic Efficiency Classes

\[\exists \text{ doesn't matter} \]

\[t(n) \in \Theta(c_1 g(n)) \]

Figure 2.3 Big-theta notation: \(t(n) \in \Theta(g(n)) \).

\(\Theta \)-notation

Definition A function \(t(n) \) is said to be in \(\Theta(g(n)) \), denoted \(t(n) \in \Theta(g(n)) \), if \(t(n) \) is bounded both above and below by some positive constant multiples of \(g(n) \) for all large \(n \), i.e., if there exist some positive constants \(c_1 \) and \(c_2 \) and some nonnegative integer \(n_0 \) such that

\[c_2 g(n) \leq t(n) \leq c_1 g(n) \]

for all \(n \geq n_0 \).

The definition is illustrated in Figure 2.3.

For example, let us prove that \(\frac{1}{2} n(n - 1) \in \Theta(n^2) \). First, we prove the right inequality (the upper bound):

\[\frac{1}{2} n(n - 1) = \frac{1}{2} n^2 - \frac{1}{2} n^2 \leq \frac{1}{2} n^2 \]

for all \(n \geq 0 \).

Second, we prove the left inequality (the lower bound):

\[\frac{1}{2} n(n - 1) = \frac{1}{2} n^2 - \frac{1}{2} n^2 \geq \frac{1}{2} n^2 - \frac{1}{2} n^2 \]

(For all \(n \geq 2 \) = \(\frac{1}{2} n^2 \).

Hence, we can select \(c_2 = \frac{1}{4} \), \(c_1 = \frac{1}{2} \), and \(n_0 = 2 \).

Useful Property Involving the Asymptotic Notations

Using the formal definitions of the asymptotic notations, we can prove their general properties (see Problem 7 in this section’s exercises for a few simple examples). The following property, in particular, is useful in analyzing algorithms that comprise two consecutively executed parts.

\[t(n) \in \Theta(g(n)) \]

\[c_2 g(n) \leq t(n) \leq c_1 g(n) \]

for all \(n \geq n_0 \).
THEOREM If \(t_1(n) \in O(g_1(n)) \) and \(t_2(n) \in O(g_2(n)) \), then
\[
t_1(n) + t_2(n) \in O(\max\{g_1(n), g_2(n)\}).
\]
(The analogous assertions are true for the \(\Omega \) and \(\Theta \) notations as well.)

PROOF The proof extends to orders of growth the following simple fact about four arbitrary real numbers \(a_1, b_1, a_2, b_2 \): if \(a_1 \leq b_1 \) and \(a_2 \leq b_2 \), then \(a_1 + a_2 \leq \max\{b_1, b_2\} \).

Since \(t_1(n) \in O(g_1(n)) \), there exist some positive constant \(c_1 \) and some non-negative integer \(n_1 \) such that
\[
t_1(n) \leq c_1 g_1(n) \quad \text{for all } n \geq n_1.
\]
Similarly, since \(t_2(n) \in O(g_2(n)) \),
\[
t_2(n) \leq c_2 g_2(n) \quad \text{for all } n \geq n_2.
\]
Let us denote \(c_3 = \max\{c_1, c_2\} \) and consider \(n \geq \max\{n_1, n_2\} \) so that we can use both inequalities. Adding them yields the following:
\[
t_1(n) + t_2(n) \leq c_3 g_1(n) + c_3 g_2(n)
\]
\[
\leq c_3 \max\{g_1(n), g_2(n)\}.
\]
Hence, \(t_1(n) + t_2(n) \in O(\max\{g_1(n), g_2(n)\}) \), with the constants \(c_3 \) and \(n_0 \) required by the \(O \) definition being \(2c_3 = 2 \max\{c_1, c_2\} \) and \(\max\{n_1, n_2\} \), respectively.

So what does this property imply for an algorithm that comprises two consecutively executed parts? It implies that the algorithm’s overall efficiency is determined by the part with a higher order of growth, i.e., its least efficient part:
\[
\begin{align*}
t_1(n) &\in O(g_1(n)) \\
t_2(n) &\in O(g_2(n))
\end{align*}
\]
\[
t_1(n) + t_2(n) \in O(\max\{g_1(n), g_2(n)\}).
\]

For example, we can check whether an array has equal elements by the following two-part algorithm: first, sort the array by applying some known sorting algorithm; second, scan the sorted array to check its consecutive elements for equality. If, for example, a sorting algorithm used in the first part makes no more than \(\frac{1}{2}n(n - 1) \) comparisons (and hence is in \(O(n^2) \)) while the second part makes no more than \(n - 1 \) comparisons (and hence is in \(O(n) \)), the efficiency of the entire algorithm will be in \(O(\max\{n^2, n\}) = O(n^2) \).

Using Limits for Comparing Orders of Growth

Though the formal definitions of \(O \), \(\Omega \), and \(\Theta \) are indispensable for proving their abstract properties, they are rarely used for comparing the orders of growth of two specific functions. A much more convenient method for doing so is based on
computing the limit of the ratio of two functions in question. Three principal cases may arise:

\[\lim_{n \to \infty} \frac{t(n)}{g(n)} = \begin{cases}
0 & \text{implies that } t(n) \text{ has a smaller order of growth than } g(n), \\
c & \text{implies that } t(n) \text{ has the same order of growth as } g(n), \\
\infty & \text{implies that } t(n) \text{ has a larger order of growth than } g(n).
\end{cases} \]

Note that the first two cases mean that \(t(n) \in O(g(n)) \), the last two mean that \(t(n) \in \Omega(g(n)) \), and the second case means that \(t(n) \in \Theta(g(n)) \).

The limit-based approach is often more convenient than the one based on the definitions because it can take advantage of the powerful calculus techniques developed for computing limits, such as L'Hôpital's rule

\[\lim_{n \to \infty} \frac{t(n)}{g(n)} = \lim_{n \to \infty} \frac{t'(n)}{g'(n)} \]

and Stirling's formula

\[n! \approx \sqrt{2\pi n} \left(\frac{n}{e} \right)^n \] for large values of \(n \).

Here are three examples of using the limit-based approach to comparing orders of growth of two functions.

EXAMPLE 1 Compare the orders of growth of \(\frac{1}{2}n(n-1) \) and \(n^2 \). (This is one of the examples we used at the beginning of this section to illustrate the definitions.)

\[\lim_{n \to \infty} \frac{\frac{1}{2}n(n-1)}{n^2} = \frac{1}{2} \lim_{n \to \infty} \frac{n^2 - n}{n^2} = \frac{1}{2} \lim_{n \to \infty} (1 - \frac{1}{n}) = \frac{1}{2} \]

Since the limit is equal to a positive constant, the functions have the same order of growth \(\Theta \), symbolically \(\frac{1}{2}n(n-1) \in \Theta(n^2) \).

EXAMPLE 2 Compare the orders of growth of \(\log_2 n \) and \(\sqrt{n} \). (Unlike Example 1, the answer here is not immediately obvious.)

\[\lim_{n \to \infty} \frac{\log_2 n}{\sqrt{n}} = \lim_{n \to \infty} \left(\frac{\log_2 n}{\sqrt{n}} \right)^1 = \lim_{n \to \infty} \left(\frac{\log_2 e}{\sqrt{n}} \right)^1 = \frac{\log_2 e}{\sqrt{n}} \lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0. \]

Since the limit is equal to zero, \(\log_2 n \) has a smaller order of growth than \(\sqrt{n} \). (Since \(\lim_{n \to \infty} \frac{\log_2 n}{\sqrt{n}} = 0 \), we can use the so-called little-oh notation: \(\log_2 n \in o(\sqrt{n}) \). Unlike the big-Oh, the little-oh notation is rarely used in analysis of algorithms.)

The fourth case, in which such a limit does not exist, rarely happens in the actual practice of analyzing algorithms. Still, this possibility makes the limit-based approach to comparing orders of growth less general than the one based on the definitions of \(\Theta, \Omega, \) and \(O \).
EXAMPLE 3 Compare the orders of growth of $n!$ and 2^n. (We discussed this informally in Section 2.1.) Taking advantage of Stirling’s formula, we get

$$
\lim_{n \to \infty} \frac{n!}{2^n} = \lim_{n \to \infty} \frac{\sqrt{2\pi n} \left(\frac{n}{e} \right)^n}{2^n} = \lim_{n \to \infty} \sqrt{2\pi n} \left(\frac{n}{e} \right)^n = \infty.
$$

Thus, though 2^n grows very fast, $n!$ grows still faster. We can write symbolically that $n! \in \Omega(2^n)$; note, however, that while the big-Omega notation does not preclude the possibility that $n!$ and 2^n have the same order of growth, the limit computed here certainly does.

Basic Efficiency Classes

Even though the efficiency analysis framework puts together all the functions whose orders of growth differ by a constant multiple, there are still infinitely many such classes. (For example, the exponential functions a^n have different orders of growth for different values of base a.) Therefore, it may come as a surprise that the time efficiencies of a large number of algorithms fall into only a few classes. These classes are listed in Table 2.2 in increasing order of their orders of growth, along with their names and a few comments.

You could raise a concern that classifying algorithms by their asymptotic efficiency would be of little practical use since the values of multiplicative constants are usually left unspecified. This leaves open the possibility of an algorithm in a worse efficiency class running faster than an algorithm in a better efficiency class for inputs of realistic sizes. For example, if the running time of one algorithm is n^3 while the running time of the other is $10^9 n$, the cubic algorithm will outperform the quadratic algorithm unless n exceeds 10^9. A few such anomalies are indeed known. Fortunately, multiplicative constants usually do not differ that drastically.

As a rule, you should expect an algorithm from a better asymptotic efficiency class to outperform an algorithm from a worse class even for moderately sized inputs. This observation is especially true for an algorithm with a better than exponential running time versus an exponential (or worse) algorithm.

Exercises 2.2

1. Use the most appropriate notation among O, Θ, and Ω to indicate the time efficiency class of sequential search (see Section 2.1)
 a. in the worst case.
 b. in the best case.
 c. in the average case.
2. Use the informal definitions of O, Θ, and Ω to determine whether the following assertions are true or false.
TABLE 2.2 Basic asymptotic efficiency classes

<table>
<thead>
<tr>
<th>Class</th>
<th>Name</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>constant</td>
<td>Short of best-case efficiencies, very few reasonable examples can be given since an algorithm’s running time typically goes to infinity when its input size grows infinitely large.</td>
</tr>
<tr>
<td>log n</td>
<td>logarithmic</td>
<td>Typically, a result of cutting a problem’s size by a constant factor on each iteration of the algorithm (see Section 4.4). Note that a logarithmic algorithm cannot take into account all its input or even a fixed fraction of it: any algorithm that does so will have at least linear running time.</td>
</tr>
<tr>
<td>n</td>
<td>linear</td>
<td>Algorithms that scan a list of size (n) (e.g., sequential search) belong to this class.</td>
</tr>
<tr>
<td>(n \log n)</td>
<td>linearithmic</td>
<td>Many divide-and-conquer algorithms (see Chapter 5), including mergesort and quicksort in the average case, fall into this category.</td>
</tr>
<tr>
<td>(n^2)</td>
<td>quadratic</td>
<td>Typically, characterizes efficiency of algorithms with two embedded loops (see the next section). Elementary sorting algorithms and certain operations on (n \times n) matrices are standard examples.</td>
</tr>
<tr>
<td>(n^3)</td>
<td>cubic</td>
<td>Typically, characterizes efficiency of algorithms with three embedded loops (see the next section). Several nontrivial algorithms from linear algebra fall into this class.</td>
</tr>
<tr>
<td>(2^n)</td>
<td>exponential</td>
<td>Typical for algorithms that generate all subsets of an (n)-element set. Often, the term “exponential” is used in a broader sense to include this and larger orders of growth as well.</td>
</tr>
<tr>
<td>(n!)</td>
<td>factorial</td>
<td>Typical for algorithms that generate all permutations of an (n)-element set.</td>
</tr>
</tbody>
</table>

3. For each of the following functions, indicate the class \(\Theta(g(n)) \) the function belongs to. (Use the simplest \(g(n) \) possible in your answers.) Prove your assertions.

a. \(n(n+1)/2 \in O(n^2) \)
b. \(n(n+1)/2 \in O(n^3) \)
c. \(n(n+1)/2 \in \Theta(n^2) \)
d. \(n(n+1)/2 \in \Omega(n) \)
4. a. Table 2.1 contains values of several functions that often arise in the analysis of algorithms. These values certainly suggest that the functions
$$\log n, \ n, \ n \log n, \ n^2, \ n^3, \ 2^n, \ n!$$
are listed in increasing order of their order of growth. Do these values prove this fact with mathematical certainty?
b. Prove that the functions are indeed listed in increasing order of their order of growth.

5. List the following functions according to their order of growth from the lowest to the highest:

$$n - 2, \ \log(n + 100)^{10}, \ 2^{2n}, \ 0.001n^4 + 3n^3 + 1, \ \ln n, \ \sqrt{n}, \ \sqrt[3]{n},$$

6. a. Prove that every polynomial of degree k, $p(n) = a_k n^k + a_{k-1} n^{k-1} + \cdots + a_0$ with $a_k > 0$, belongs to $\Theta(n^k)$.

b. Prove that exponential functions a^n have different orders of growth for different values of base $a > 0$.

7. Prove the following assertions by using the definitions of the notations involved, or disprove them by giving a specific counterexample.

a. If $t(n) \in O(g(n))$, then $g(n) \in \Omega(t(n))$.

b. $\Theta(a g(n)) = \Theta(g(n))$, where $a > 0$.

c. $\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$.

d. For any two nonnegative functions $t(n)$ and $g(n)$ defined on the set of nonnegative integers, either $t(n) \in O(g(n))$, or $t(n) \in \Omega(g(n))$, or both.

8. Prove the section’s theorem for

a. Ω notation. b. Θ notation.

9. We mentioned in this section that one can check whether all elements of an array are distinct by a two-part algorithm based on the array’s presorting.

a. If the presorting is done by an algorithm with a time efficiency in $\Theta(n \log n)$, what will be the time-efficiency class of the entire algorithm?

b. If the sorting algorithm used for presorting needs an extra array of size n, what will be the space-efficiency class of the entire algorithm?

10. The range of a finite nonempty set of n real numbers S is defined as the difference between the largest and smallest elements of S. For each representation of S given below, describe in English an algorithm to compute the range. Indicate the time efficiency classes of these algorithms using the most appropriate notation (O, Θ, or Ω).

a. An unsorted array
b. A sorted array
c. A sorted singly linked list
d. A binary search tree
11. **Lighter or heavier?** You have \(n \geq 2 \) identical-looking coins and a two-pan balance scale with no weights. One of the coins is a fake, but you do not know whether it is lighter or heavier than the genuine coins, which all weigh the same. Design a \(\Theta(1) \) algorithm to determine whether the fake coin is lighter or heavier than the others.

12. **Door in a wall** You are facing a wall that stretches infinitely in both directions. There is a door in the wall, but you know neither how far away nor in which direction. You can see the door only when you are right next to it. Design an algorithm that enables you to reach the door by walking at most \(O(n) \) steps where \(n \) is the (unknown to you) number of steps between your initial position and the door. [Par95]

2.3 Mathematical Analysis of Nonrecursive Algorithms

In this section, we systematically apply the general framework outlined in Section 2.1 to analyzing the time efficiency of nonrecursive algorithms. Let us start with a very simple example that demonstrates all the principal steps typically taken in analyzing such algorithms.

EXAMPLE 1

Consider the problem of finding the value of the largest element in a list of \(n \) numbers. For simplicity, we assume that the list is implemented as an array. The following is pseudocode of a standard algorithm for solving the problem.

```
ALGORITHM MaxElement(A[0..n-1])
//Determines the value of the largest element in a given array
//Input: An array A[0..n-1] of real numbers
//Output: The value of the largest element in A
maxval ← A[0]
for i ← 1 to n-1 do
    if A[i] > maxval
        maxval ← A[i]
return maxval
```

The obvious measure of an input’s size here is the number of elements in the array, i.e., \(n \). The operations that are going to be executed most often are in the algorithm’s \texttt{for} loop. There are two operations in the loop’s body: the comparison \(A[i] > maxval \) and the assignment \(maxval ← A[i] \). Which of these two operations should we consider basic? Since the comparison is executed on each repetition of the loop and the assignment is not, we should consider the comparison to be the algorithm’s basic operation. Note that the number of comparisons will be the same for all arrays of size \(n \); therefore, in terms of this metric, there is no need to distinguish among the worst, average, and best cases here.
Let us denote \(C(n)\) the number of times this comparison is executed and try to find a formula expressing it as a function of size \(n\). The algorithm makes one comparison on each execution of the loop, which is repeated for each value of the loop’s variable \(i\) within the bounds 1 and \(n - 1\), inclusive. Therefore, we get the following sum for \(C(n)\):

\[
C(n) = \sum_{i=1}^{n-1} 1.
\]

This is an easy sum to compute because it is nothing other than 1 repeated \(n - 1\) times. Thus,

\[
C(n) = \sum_{i=1}^{n-1} 1 = n - 1 \in \Theta(n). \quad \square
\]

Here is a general plan to follow in analyzing nonrecursive algorithms.

General Plan for Analyzing the Time Efficiency of Nonrecursive Algorithms

1. Decide on a parameter (or parameters) indicating an input’s size.
2. Identify the algorithm’s basic operation. (As a rule, it is located in the innermost loop.)
3. Check whether the number of times the basic operation is executed depends only on the size of an input. If it also depends on some additional property, the worst-case, average-case, and, if necessary, best-case efficiencies have to be investigated separately.
4. Set up a sum expressing the number of times the algorithm’s basic operation is executed.\(^4\)
5. Using standard formulas and rules of sum manipulation, either find a closed-form formula for the count or, at the very least, establish its order of growth.

Before proceeding with further examples, you may want to review Appendix A, which contains a list of summation formulas and rules that are often useful in analysis of algorithms. In particular, we use especially frequently two basic rules of sum manipulation

\[
\sum_{i=d}^{u} c a_i = c \sum_{i=d}^{u} a_i, \quad (R1)
\]

\[
\sum_{i=d}^{u} (a_i \pm b_i) = \sum_{i=d}^{u} a_i \pm \sum_{i=d}^{u} b_i, \quad (R2)
\]

\(^4\) Sometimes, an analysis of a nonrecursive algorithm requires setting up not a sum but a recurrence relation for the number of times its basic operation is executed. Using recurrence relations is much more typical for analyzing recursive algorithms (see Section 2.4).
2.3 Mathematical Analysis of Nonrecursive Algorithms

and two summation formulas

\[\sum_{i=l}^{u} 1 = u - l + 1 \quad \text{where } l \leq u \text{ are some lower and upper integer limits}, \quad (S1) \]

\[\sum_{i=l}^{u} i = \sum_{i=1}^{n} 1 + 2 + \cdots + n = \frac{n(n+1)}{2} = \frac{1}{2} n^2 \in \Theta(n^2). \quad (S2) \]

Note that the formula \(\sum_{i=1}^{n-1} 1 = n - 1 \), which we used in Example 1, is a special case of formula (S1) for \(l = 1 \) and \(u = n - 1 \).

EXAMPLE 2 Consider the **element uniqueness problem**: check whether all the elements in a given array of \(n \) elements are distinct. This problem can be solved by the following straightforward algorithm.

ALGORITHM UniqueElements(\(A[0..n-1] \))

// Determines whether all the elements in a given array are distinct
// Input: An array \(A[0..n-1] \)
// Output: Returns “true” if all the elements in \(A \) are distinct
\/
// and “false” otherwise
for i ← 0 to n - 2 do
 for j ← i + 1 to n - 1 do
return true

The natural measure of the input’s size here is again \(n \), the number of elements in the array. Since the innermost loop contains a single operation (the comparison of two elements), we should consider it as the algorithm’s basic operation. Note, however, that the number of element comparisons depends not only on \(n \) but also on whether there are equal elements in the array and, if there are, which array positions they occupy. We will limit our investigation to the worst case only.

By definition, the worst case input is an array for which the number of element comparisons \(C_{\text{worst}}(n) \) is the largest among all arrays of size \(n \). An inspection of the innermost loop reveals that there are two kinds of worst-case inputs—inputs for which the algorithm does not exit the loop prematurely: arrays with no equal elements and arrays in which the last two elements are the only pair of equal elements. For such inputs, one comparison is made for each repetition of the innermost loop, i.e., for each value of the loop variable \(j \) between its limits \(i + 1 \) and \(n - 1 \); this is repeated for each value of the outer loop, i.e., for each value of the loop variable \(i \) between its limits 0 and \(n - 2 \). Accordingly, we get
Fundamentals of the Analysis of Algorithm Efficiency

\[C_{\text{worst}}(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} (n - 1) - (i + 1) + 1 = \sum_{i=0}^{n-2} (n - 1 - i) \]
\[= \sum_{i=0}^{n-2} (n - 1) - \sum_{i=0}^{n-2} i = n(n - 1) - \frac{n(n - 1)(n - 2)}{2} \]
\[= (n - 1)^2 - \frac{n(n - 1)(n - 2)}{2} = \frac{1}{2} n^2 - \Theta(n^2). \]

We also could have computed the sum \(\sum_{i=0}^{n-2} (n - 1 - i) \) faster as follows:
\[\sum_{i=0}^{n-2} (n - 1 - i) = (n - 1) + (n - 2) + \cdots + 1 = \frac{(n - 1)n}{2}, \]
where the last equality is obtained by applying summation formula (S2). Note that this result was perfectly predictable: in the worst case, the algorithm needs to compare all \(n(n - 1)/2 \) distinct pairs of its \(n \) elements.

EXAMPLE 3 Given two \(n \times n \) matrices \(A \) and \(B \), find the time efficiency of the definition-based algorithm for computing their product \(C = AB \). By definition, \(C \) is an \(n \times n \) matrix whose elements are computed as the scalar (dot) products of the rows of matrix \(A \) and the columns of matrix \(B \):

\[
\begin{bmatrix}
A_{i,j} \\
\end{bmatrix} \times
\begin{bmatrix}
B_{i,j} \\
\end{bmatrix} =
\begin{bmatrix}
C_{i,j} \\
\end{bmatrix}
\]

where \(C_{i,j} = A_{i,0}B_{0,j} + \cdots + A_{i,n-2}B_{n-2,j} + A_{i,n-1}B_{n-1,j} \) for every pair of indices \(0 \leq i, j \leq n - 1 \).

ALGORITHM MatrixMultiplication(n: A[0..n-1, 0..n-1], B[0..n-1, 0..n-1])

//Multiplies two square matrices of order \(n \) by the definition-based algorithm
//Input: Two \(n \times n \) matrices \(A \) and \(B \)
//Output: Matrix \(C = AB \)
for \(i \leftarrow 0 \) to \(n - 1 \) do
 for \(j \leftarrow 0 \) to \(n - 1 \) do
 for \(k \leftarrow 0 \) to \(n - 1 \) do
 \(C_{i,j} \leftarrow C_{i,j} + A_{i,k} \times B_{k,j} \)
return \(C \)
We measure an input’s size by matrix order n. There are two arithmetical operations in the innermost loop here—multiplication and addition—that, in principle, can compete for designation as the algorithm’s basic operation. Actually, we do not have to choose between them, because on each repetition of the innermost loop each of the two is executed exactly once. So by counting one we automatically count the other. Still, following a well-established tradition, we consider multiplication as the basic operation (see Section 2.1). Let us set up a sum for the total number of multiplications $M(n)$ executed by the algorithm. (Since this count depends only on the size of the input matrices, we do not have to investigate the worst-case, average-case, and best-case efficiencies separately.)

Obviously, there is just one multiplication executed on each repetition of the algorithm’s innermost loop, which is governed by the variable k ranging from the lower bound 0 to the upper bound $n - 1$. Therefore, the number of multiplications made for every pair of specific values of variables i and j is

$$
\sum_{k=0}^{n-1} 1,
$$

and the total number of multiplications $M(n)$ is expressed by the following triple sum:

$$
M(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} 1.
$$

Now, we can compute this sum by using formula (S1) and rule (R1) given above. Starting with the innermost sum $\sum_{k=0}^{n-1} 1$, which is equal to n (why?), we get

$$
M(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} 1 = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} n = \sum_{i=0}^{n-1} n^2 = n^3.
$$

This example is simple enough so that we could get this result without all the summation machinations. How? The algorithm computes n^2 elements of the product matrix. Each of the product's elements is computed as the scalar (dot) product of an n-element row of the first matrix and an n-element column of the second matrix, which takes n multiplications. So the total number of multiplications is $n \cdot n^2 = n^3$. (It is this kind of reasoning that we expected you to employ when answering this question in Problem 2 of Exercises 2.1.)

If we now want to estimate the running time of the algorithm on a particular machine, we can do it by the product

$$
T(n) \approx c_m M(n) = c_m n^3,
$$

where c_m is the time of one multiplication on the machine in question. We would get a more accurate estimate if we took into account the time spent on the additions, too:

$$
T(n) \approx c_m M(n) + c_a A(n) = c_m n^3 + c_a n^3 = (c_m + c_a) n^3.
$$
where \(c_a \) is the time of one addition. Note that the estimates differ only by their multiplicative constants and not by their order of growth.

You should not have the erroneous impression that the plan outlined above always succeeds in analyzing a nonrecursive algorithm. An irregular change in a loop variable, a sum too complicated to analyze, and the difficulties intrinsic to the average case analysis are just some of the obstacles that can prove to be insurmountable. These caveats notwithstanding, the plan does work for many simple nonrecursive algorithms, as you will see throughout the subsequent chapters of the book.

As a last example, let us consider an algorithm in which the loop’s variable changes in a different manner from that of the previous examples.

EXAMPLE 4 The following algorithm finds the number of binary digits in the binary representation of a positive decimal integer.

ALGORITHM *Binary(n)*

//Input: A positive decimal integer \(n \)
//Output: The number of binary digits in \(n \)’s binary representation

\[
\text{count} \leftarrow 1 \\
\text{while } n > 1 \text{ do } \\
\quad \text{count} \leftarrow \text{count} + 1 \\
\quad n \leftarrow \lfloor n/2 \rfloor \\
\text{return count}
\]

First, notice that the most frequently executed operation here is not inside the \textbf{while} loop but rather the comparison \(n > 1 \) that determines whether the loop’s body will be executed. Since the number of times the comparison will be executed is larger than the number of repetitions of the loop’s body by exactly 1, the choice is not that important.

A more significant feature of this example is the fact that the loop variable takes on only a few values between its lower and upper limits; therefore, we have to use an alternative way of computing the number of times the loop is executed. Since the value of \(n \) is about halved on each repetition of the loop, the answer should be about \(\log_2 n \). The exact formula for the number of times the comparison \(n > 1 \) will be executed is actually \(\lfloor \log_2 n \rfloor + 1 \)—the number of bits in the binary representation of \(n \) according to formula (2.1). We could also get this answer by applying the analysis technique based on recurrence relations; we discuss this technique in the next section because it is more pertinent to the analysis of recursive algorithms.
Exercises 2.3

1. Compute the following sums.
 a. 1 + 3 + 5 + 7 + · · · + 999
 b. 2 + 4 + 8 + 16 + · · · + 1024
 c. \(\sum_{i=1}^{n} 1\)
 d. \(\sum_{i=1}^{n} i\)
 e. \(\sum_{i=1}^{n} (i + 1)\)
 f. \(\sum_{i=1}^{n} 3^i\)
 g. \(\sum_{i=1}^{n} \sum_{j=1}^{n} i\)
 h. \(\sum_{i=1}^{n} 1/(i + 1)\)

2. Find the order of growth of the following sums. Use the \(\Theta(g(n))\) notation with the simplest function \(g(n)\) possible.
 a. \(\sum_{i=1}^{n} (i^2 + 1)^2\)
 b. \(\sum_{i=1}^{n} \log i^2\)
 c. \(\sum_{i=1}^{n} (i + 3)2^{i-1}\)
 d. \(\sum_{i=1}^{n} \sum_{j=1}^{n} (i + j)\)

3. The sample variance of \(n\) measurements \(x_1, \ldots, x_n\) can be computed as either
 \[
 \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n - 1}
 \]
 where \(\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}\)
 or
 \[
 \frac{\sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2/n}{n - 1}
 \]
 Find and compare the number of divisions, multiplications, and additions/subtractions (additions and subtractions are usually bunched together) that are required for computing the variance according to each of these formulas.

4. Consider the following algorithm.

 ALGORITHM Mystery(n)
 // Input: A nonnegative integer \(n\)
 \(S \leftarrow 0\)
 for \(i \leftarrow 1 \text{ to } n\) do
 \(S \leftarrow S + i \times i\)
 return \(S\)

 a. What does this algorithm compute?
 b. What is its basic operation?
 c. How many times is the basic operation executed?
 d. What is the efficiency class of this algorithm?
 e. Suggest an improvement, or a better algorithm altogether, and indicate its efficiency class. If you cannot do it, try to prove that, in fact, it cannot be done.
5. Consider the following algorithm.

ALGORITHM Secret(A[0..n−1])

//Input: An array A[0..n−1] of n real numbers
minval ← A[0]; maxval ← A[0]
for i ← 1 to n−1 do
 if A[i] < minval
 minval ← A[i]
 if A[i] > maxval
 maxval ← A[i]
return maxval − minval

Answer questions (a)–(e) of Problem 4 about this algorithm.

6. Consider the following algorithm.

ALGORITHM Enigma(A[0..n−1, 0..n−1])

//Input: A matrix A[0..n−1, 0..n−1] of real numbers
for i ← 0 to n−2 do
 for j ← i + 1 to n−1 do
 if A[i, j] ≠ A[j, i]
 return false
return true

Answer questions (a)–(e) of Problem 4 about this algorithm.

7. Improve the implementation of the matrix multiplication algorithm (see Example 3) by reducing the number of additions made by the algorithm. What effect will this change have on the algorithm’s efficiency?

8. Determine the asymptotic order of growth for the total number of times all the doors are toggled in the locker doors puzzle (Problem 12 in Exercises 1.1).

9. Prove the formula

\[
\sum_{i=1}^{n} i = 1 + 2 + \ldots + n = \frac{n(n + 1)}{2}
\]

either by mathematical induction or by following the insight of a 10-year-old schoolboy named Carl Friedrich Gauss (1777–1855) who grew up to become one of the greatest mathematicians of all times.
10. Mental arithmetic A 10×10 table is filled with repeating numbers on its diagonals as shown below. Calculate the total sum of the table’s numbers in your head (after [Cra07, Question 1.33]).

\[
\begin{array}{cccccccccc}
1 & 2 & 3 & \cdots & 9 & 10 \\
2 & 3 & 9 & 10 & 11 & 17 & 18 & \cdots & \cdots & 17 & 18 & 19 \\
3 & 9 & 10 & 11 & & & & & & \\
\vdots & 9 & 10 & 11 & & & & & & \\
9 & 10 & 11 & & & & & & & & \\
9 & 10 & 11 & & & & & & & & \\
9 & 10 & 11 & & & & & & & & \\
9 & 10 & 11 & & & & & & & & \\
9 & 10 & 11 & & & & & & & & \\
9 & 10 & 11 & & & & & & & & \\
9 & 10 & 11 & & & & & & & & \\
9 & 10 & 11 & & & & & & & & \\
10 & 11 & & & & & & & & & & \\
\end{array}
\]

11. Consider the following version of an important algorithm that we will study later in the book.

\[\text{ALGORITHM} \quad \text{GE}(A[0..n−1,0..n])\]

//Input: An \(n \times (n + 1)\) matrix \(A[0..n−1, 0..n]\) of real numbers

for \(i \leftarrow 0 \text{ to } n−2 \) do

for \(j \leftarrow i + 1 \text{ to } n−1 \) do

for \(k \leftarrow i \text{ to } n \) do

a. Find the time efficiency class of this algorithm.

b. What glaring inefficiency does this pseudocode contain and how can it be eliminated to speed the algorithm up?

12. von Neumann’s neighborhood Consider the algorithm that starts with a single square and on each of its \(n\) iterations adds new squares all around the outside. How many one-by-one squares are there after \(n\) iterations? [Gar99] (In the parlance of cellular automata theory, the answer is the number of cells in the von Neumann neighborhood of range \(n\).) The results for \(n = 0, 1, \text{ and } 2\) are illustrated below.
13. **Page numbering** Find the total number of decimal digits needed for numbering pages in a book of 1000 pages. Assume that the pages are numbered consecutively starting with 1.

2.4 Mathematical Analysis of Recursive Algorithms

In this section, we will see how to apply the general framework for analysis of algorithms to recursive algorithms. We start with an example often used to introduce novices to the idea of a recursive algorithm.

EXAMPLE 1 Compute the factorial function $F(n) = n!$ for an arbitrary nonnegative integer n. Since

$$n! = 1 \cdot \ldots \cdot (n - 1) \cdot n = (n - 1)! \cdot n \quad \text{for } n \geq 1$$

and $0! = 1$ by definition, we can compute $F(n) = F(n - 1) \cdot n$ with the following recursive algorithm.

ALGORITHM $F(n)$

// Computes $n!$ recursively
// Input: A nonnegative integer n
// Output: The value of $n!$
if $n = 0$ return 1
else return $F(n - 1) \cdot n$

For simplicity, we consider n itself as an indicator of this algorithm’s input size (rather than the number of bits in its binary expansion). The basic operation of the algorithm is multiplication, whose number of executions we denote $M(n)$. Since the function $F(n)$ is computed according to the formula

$$F(n) = F(n - 1) \cdot n \quad \text{for } n > 0,$$

5. Alternatively, we could count the number of times the comparison $n = 0$ is executed, which is the same as counting the total number of calls made by the algorithm (see Problem 2 in this section’s exercises).