

Land-use change and terrestrial carbon storage in Western North Carolina, 1850-2030

> Ryan Kirk PhD Candidate

Overview

Rationale:

- * LUCC considered a major driver of global C budget
- * Relative magnitude of LUCC influence on C uncertain
- * LUCC history rarely known at landscape scale

Objectives:

- 1) Summarize narrative history of land use in the region
- 2) Quantify land use trajectories and rates of change
- 3) Reconstruct major land cover at decadal scale
- 4) Model C budget based on LUCC reconstruction

Nested study areas

Western North Carolina History

De Soto search for gold "Trail of Tears" – Cherokee Tennes: Knoxville removal North Asheville Carolina Cherokee Spartanburg TERRITOR European Camden Georgia Columbia^{*} JOrange-Traders A.E.C burg Augusta 🔒 South Milledgevi<u>l</u>le Carolina **Established** Point Comfort Macon Charleston 1500 1600 1700 1800 1900 2000 1740 1715 1690 1790 1760 1750 **1670** 1800 1820 1835 NC Settlement Expansion

1904 Ashe/Ayers Survey

Macon County Today

Dissertation Chapters

1) Land use history, rates of change, and trajectories in Macon County, 1850-2030

- 2) Development trends in Macon County, 1900-2030
- 3) Decadal reconstruction of major land uses in the region, 1850-2000
- 4) Land-use change effects on aboveground woody biomass

Ch 1 Census Data Collection

8

Primary Watersheds

Ch 1

Ch 1 Land Use Trajectories, 1954-2006

25% of 13,000 ha changed land use:

Ch 1 Rates of Change

Annualized percent of landscape changed

Ch 1 Scaling up to the county

Reconstruct decadal land cover using a hierarchical decision-rule model:

- 1) Use spatial data sets where available
- 2) For remaining dates
 - a) identify quantity of change from census data
 - b) identify location of change using hierarchical approach
 - i) Use simple logic rules where defensible
 - ii) Use probability models in all other instances

Probability model for agriculture Ch 1

Ch 1

Model Validation

Method:

- Components of Agreement
- Pontius and Suedmeyer (2004)
- VALIDATE module in IDRISI

Average across dates: Map agreement = 76%Quantity disagreement = 4%Location disagreement = 20%

Terrain Profile

1963 Digitized, 25m

1984 Digitized, 25m 1984 Aggregated, 100m

1940 Modeled, 100m

1980 Modeled, 100m

1942 Digitized, 25m

1942 Aggregated, 100m

Ch 1 Aggregate land use, 1850-2030

Ch 1 Forest Ownership Changes

27

Ch 1 Ch 1 Conclusions & Contributions

- * 180 year, logically consistent land use data set
- * Modeling strategy using simple logic rules and probability maps that can reproduce patterns at a reasonable accuracy
- * Periodization of land use in the region, illustrating:
 - * shifts in ownership patterns
 - * dynamic and declining rates of change
 - * primary land use trajectories
- * Evidence of biophysical link between terrain properties and land use trajectories

Dissertation Chapters

1) Land use history, rates of change, and trajectories in Macon County, 1850-2030

- 2) Development trends in Macon County, 1900-2030
- 3) Decadal reconstruction of major land uses in the region, 1850-2000
- 4) Land-use change effects on aboveground woody biomass

Comparison of building and census data Ch 2

Temporal Trends of Development

Ch 2

200

0

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

Year

Changing Development Patterns

Densification = development in areas < 70% forested **Expansion** = development in areas > 70% forested

Ch 2

Building Density 1929 **Ch 2**

1954

2030

2010 30 Km 0

Development Type

- Undeveloped (0 Buildings/Ha)
- Rural (< 0.06)
- Exurban (0.06 0.25)
- Suburban (0.25 2.5)
- Urban (2.5 8)

Ch 2 Ch 2 Conclusions & Contributions

* Dynamic temporal trends between terrain variables and new building construction

* Strong differential trends in development in forested and non-forested areas at both low and high densities

* Method for using county government data sources to analyze spatio-temporal trends

* Method for stratifying landscape by building density to aid forecasting

Dissertation Chapters

1) Land use history, rates of change, and trajectories in Macon County, 1850-2030

- 2) Development trends in Macon County, 1900-2030
- 3) Decadal reconstruction of major land uses in the region, 1850-2000
- 4) Land-use change effects on aboveground woody biomass

Regional Modeling Sequence

Ch 3

Objective: Decadal classification from 1850-2030 for Development, Agriculture, and Forest

- 1) Generalized version of 2000 NLCD as baseline
- 2) Mask out water/bare rock
- 3) Model <u>Development</u> going backwards in time by "removing" cells each decade based on spatiallydisaggregated census Housing Unit estimates.
- 4) Model <u>Agriculture</u> moving forward from 1850 based on Census of Agriculture estimates and the ASI
- 5) All other areas classified Forest

Regional Model Validation 1904 Ayers/Ashe Map Ch 3 **1900 Modeled Land Cover** Map agreement = 71% Quantity disagreement = 3%Location disagreement = 26% 100 ΚM Counties Non Forest Forest **1954 Photo-Interpreted** 1950 Modeled Land Cover Map agreement = 84% Quantity disagreement = 8% 8% Location disagreement = 10 KN 0 **County Boundary** Forest Agriculture Developed

Comparison against inventory Ch 3 and satellite forest area estimates

40

Ch 3 Ch 3 Conclusions & Contributions

* 180 year land cover data set over 21 counties

* Method for estimating historic land use in mountainous regions using terrain-based probability models

* Estimate of the total area ever used for agriculture in the region (34%)

* Semi-automated method for extracting polygon features from historic maps

* Method for adjusting county-level census variables to account for changing county boundaries

Dissertation Chapters

1) Land use history, rates of change, and trajectories in Macon County, 1850-2030

- 2) Development trends in Macon County, 1900-2030
- 3) Decadal reconstruction of major land uses in the region, 1850-2000
- 4) Land-use change effects on aboveground woody biomass

Ch 4 Aggregate land use, 1850-2030

Ch 4 Stand age since establishment

Age-Yield Equations

Estimate growth based on measure of site quality

Site Index Curve

Ch 4

Site Yield Equation

Ch 4 Frothingham Yield Curves (1931)

Site Class	Elevation	Terrain Position	Forest Type
Site I: "Best Cove Soils"	2000-4000 ft	Narrow coves; broader coves long since cleared for agriculture	Mixture of species, often dominated by hemlock or yellow poplar
Site II: "Moist slopes and coves"	2000-4000 ft	Northerly slopes, lower slopes at about the same elevation as cove forest	Chestnut and several species of oak and hickory dominate
Site III: "Soils of intermediate quality"	Up to 5000 ft	Upper moist slopes	Mixture of "Northern Hardwoods"
Site IV: "Better dry slopes and ridges"	Unspecified	Found chiefly on southerly or westerly exposures , but often covers east slopes as well around to the northeast	More drought resistant species; estimate 2/3 of total forest area in this class
Site V: "Poorer dry slopes and ridges"	Unspecified	Unspecified	Unspecified

Ch 4

C accrual curves

Aboveground Woody C Accrual

Ch 4

Comparison against Independent Estimates

Ch 4 Conclusions & Contributions

- * Historic estimate of aboveground woody C (AWC) pool in the region
- * Estimate of aggrading AWC, but at a declining rate
- * Estimate of relative effects of industrial logging (84%) and agriculture expansion and abandonment (16%) on AWC

* Estimate of maximum AWC recovery (85% of 1850 pool) assuming no major disturbance and no change in forest area

* Method for modifying bookkeeping-style C models by environmental gradients

Future Research

1) Add disturbance & environmental models:

- Chestnut Blight & other pathogens
- Fire, windthrows, ice-storms, landslides, etc
- Partial harvest
- 2) Complete C budget:
 - Foliage, CWD, soil
- 3) Modern and historic forest area discrepancies
- 4) Effects of land-use change on ecosystem services

Acknowledgements

Advisor: Committee Members: Paul Bolstad Marv Bauer Tom Burk Steve Manson

Peers: Perry N., Bruce C., Andy J., Kirk W., Mark N., Jon M., Roy R., Andy F., Andy H., Katherine M., Phil R., Chris E.

Data development gang:

Justin Becknell Jasper Kruggel Jeremy Sorbel John Koenigs Jeff Lawler Adam Gerber

Mike Weiss Kris Kubicek Eric Pederson

Funding Sources:

Coweeta LTER NASA LCLUC Program

Very supportive family!