
 
 
 
 
 
 
 
 
Regional-Scale Forest Production Modeling using Process-Based 

Models and GIS 
 
 

A Plan B Paper 
Submitted to the Faculty of the Graduate School 

Of the University of Minnesota 
By 

 
 
 

Ryan William Kirk 
 
 
 
 

In Partial Fulfillment of the Requirements 
For the Degree of 
Master of Science 

 
 
 
 

____________________________ 
Professor Thomas E. Burk 

Adviser 
 
 
 

_____________________________ 
Date 

 



Acknowledgements 
 
 

I wish to thank my adviser Dr. Thomas E. Burk for his guidance and patience during the 

prolonged process of working on this project. Thanks also to Dr. Paul Bolstad and Dr. Steve 

Manson for their assistance on various aspects of this project and involvement as examining 

committee members. I would also like to thank the public agencies that provided the data used in 

the study, including the Minnesota Department of Natural Resources, the USDA Natural 

Resources Conservation Service, the National Weather Service, and the US Forest Service. 

I would also like to acknowledge my fellow students for initiating me to the realities of 

graduate school and instructing me on the processes and challenges of science, including Michael 

Counte, Melissa Arikian, Greg Edwards, Ryan Miller, Katherine Mitchell, Phil Radtke, Jason 

Henning, Jon Martin, Roy Rich, Mark Norris, Raju Vatsavai, Perry Nacionales, Chris Edgar, and 

Andy Jenks, among others. Lastly, I would like to send thanks to my family for their continued 

support during this change of career, and especially to my wife Jamie, who has inspired me in 

more ways than I ever thought possible. 

 

 i



Abstract 
 
 

While research scientists have used process-based models of forest growth for several 

decades, forest managers have only recently begun to adopt them in production environments. 

This lag is accredited to the nature of process-based models, which are often difficult to 

parameterize, challenging to validate, and built around limited technical implementations. This 

project addresses these limitations by incorporating standard information system and Geographic 

Information System (GIS) concepts into the modeling framework.  

As a sample implementation, the PnET-II and 3-PG models were run within a GIS for the 

Arrowhead region of northeastern Minnesota. The two models were each run at two spatial scales 

(1x1 km and 10x10 km grid cells). The mean NPP estimates across the two models and two 

scales range from 783.2 to 820.9 g C m-2 yr-1, with standard deviations between 218.7 and 255.0 g 

C m-2 yr-1. The two models produced similar predictions, and were comparable to published 

values from other studies in the region, including the USFS FIA database. The largest source of 

variation was forest cover type. Spatial aggregation of data sets had non-linear and non-uniform 

effects on the mean and variance of predicted NPP values. Predictions were most sensitive to 

changes in temperature values. 

Based on the experiences of this modeling study and a review of the literature, a 

framework for implementing regional-scale process-based models within a GIS is presented. 

Primary components of the framework include ecological modeling considerations, data sources 

and stores, and technological processing requirements. Overall, two primary arguments are made 

in this project. First, technology can and should provide the link for continuing communication 

between model developers and forest managers. Second, in order for process-based models to be 

successfully incorporated in operational environments, improved information system designs are 

needed. 
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1 Introduction 

 The use of mathematical models in forest management has long been common practice. 

Traditionally, statistically-derived empirical models based on historical measurements are used to 

predict timber volume supplies and evaluate management practices for specific forest stands. 

Such models, while effective, are often limited in geographic scale and are inflexible to varying 

environmental conditions. Many modern forest management objectives are defined for large land 

areas such as watersheds or regions and account for changes in environmental conditions. Thus, 

these empirical models are not readily applicable to all management considerations. 

 Over the past three decades a new modeling paradigm has become popular in the 

scientific community. Rather than using empirical measurements, this “process-based” modeling 

approach attempts to simulate the general ecological mechanisms of a given ecosystem. With the 

remarkable advances in computing technologies and understanding of ecological processes, 

process-based simulation models are providing means to address scientific and management 

questions at all spatial scales, from individual trees to the entire globe. 

 Natural resource managers, however, have expressed concerns over using process-based 

models for practical decision-making at large spatial scales. One primary point of concern is the 

sheer complexity of implementing modeling studies of this magnitude. Significant sources of 

error may result if incorrect inputs, processing steps or interpretations are introduced. The project 

presented here addresses this concern. Specifically, a generalized framework for implementing 

regional-scale process-based forest productivity models is developed, based in part from an 

implementation and comparison of two widely used process-based forest simulation models. 

 

1.1 Rationale 

 In the fall of 1998, members of the International Union of Forestry Research 

Organization (IUFRO) met in Saariselkä, Finland, to discuss the state of process-based modeling 
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and the current application of process-based models to forest management. In the summary report 

(Mäkelä et al. 2000), the group affirmed the potential of process-based models as management 

tools across all spatial scales. A primary recommendation of the group was for improved practical 

implementations within operational management systems. In essence, a key factor to further use 

of process-based models as decision-making management tools is in information system design 

and analysis, not just continued scientific development.  

 Similarly, other summary publications have concluded that process-based models can be 

applied to management decision-making with improved implementations. Battaglia and Sands 

(1998) argue that current process-based models are overly complex for practical use and are in a 

state of constant development, and this is in disagreement with the desire for robustness and 

consistency in forest planning methodology (Sievänen and Burk 1993). Johnsen et al. (2001) 

contend that process-based models are quite valuable in simulating extremely complex forest 

systems, but will only be adopted when the complexities of research models are overcome. 

Korzukhin et al. (1996) conclude that with an increasing focus on ecosystem-based forest 

management, process-based models become a valuable tool for addressing a large variety of 

management decisions. Thus, with a diverse and clearly defined interest in process-based 

modeling for natural resource decision making, efforts need to be made to join the needs of forest 

managers with the powerful models being developed by researchers around the globe.  

 The scope of this project is to conduct and evaluate implementations of two process-

based models applied at a regional scale. These two key components, process-based modeling 

and regional scale forest resource management are discussed individually. 

 

1.1.1 Process-based forest growth modeling 

 Processed-based models can be defined as formalized statements of hypotheses regarding 

a complex system and its responses to stimuli (Landsberg 1986). To scientists, such models are 
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tools that provide a structure for organizing current knowledge of a particular system, a 

framework with which to test hypotheses about that system, and a means to evaluate responses to 

stimuli within the system (Landsberg and Gower 1997). Due to the sheer complexity of 

calculations, process-based models are invariably presented as stand-alone computer programs or 

nested within spreadsheet applications. Thus, endless combinations of user interfaces, output, 

presentation, and analysis options are possible. 

 In recent years, forest managers have expressed interest in the application of process-

based models in forest management decision making (Mäkelä et al. 2000, Korzukhin et al. 1996, 

Johnsen et al. 2001). In a summary paper, Battaglia and Sands (1998) identify five potential uses 

of process-based forest productivity models as management tools: (1) prediction of growth and 

yield, (2) selection of new plantation sites, (3) identification of site limitations on productivity, 

(4) assessment of risks associated with locations or management options, and (5) use of models as 

surrogates for field experiments. Mohren and Burkhart (1994) argue that process-based models 

provide greater potential for predicting forest growth under varying environmental conditions 

than empirical growth and yield models. From this perspective, the focus of modeling shifts away 

from scientific inquiry to strategic and operational considerations.  

 

1.1.2 Modeling as a regional-scale management tool 

 Forest managers are interested not only in the characteristics of specific trees or forest 

stands, but also in trends that extend across large areas such as watersheds, landscapes or eco-

regions (Shindler 1998, Gunderson et al. 1995). While scientifically based management at these 

coarse scales is desired, collecting appropriate data is a major challenge. For most organizations, 

collecting field data across large areas that meet even the most basic accuracy standards is 

logistically and financially impossible. Process models provide a viable alternative to large-scale 

field sampling for several reasons. First, the cost of data collection is largely reduced or removed 
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completely. Second, advanced Geographic Information System (GIS) and remote sensing 

technologies provide data and analysis techniques unavailable with traditional sampling methods 

(e.g., He et al. 1998). Third, collecting data at a coarse-scale may increase accuracy and reduce 

errors compared to field measurements that have to be aggregated. 

 Although the benefits of process-models for regional scale analysis are quite evident, 

complexity remains a primary concern. It is important to investigate the possibilities of 

minimizing the complexity for end users in order for the benefits to be realized. 

 

1.2 Objectives 

 The research presented here aims to provide support for bridging the gap between 

scientific and operational implementations of process-based forest production models. To meet 

this end, this project addresses four primary objectives: 

 1) Review the current state of regional-scale modeling research and application. 

2) Implement a regional-scale modeling study using GIS and remote sensing technologies 

for northeastern Minnesota. 

3) Compare model predictions of NPP at a regional-scale using two popular process- 

based models (PnET-II and 3-PG). 

4) Based in part on the results of objectives 1, 2 and 3, develop a generalized framework 

for the technical implementation of regional-scale ecosystem process models. 

 

 The remainder of this chapter deals primarily with objective 1, providing a background 

and literature review, with specific emphasis on the models and modeling approach evaluated in 

this project. Chapter 2 addresses objectives 2 and 3. The third and final chapter of this report 

focuses on objective 4. A Portion of this project (particularly objectives 3 and 4 above) was 

condensed and published in the proceedings of the 4th Southern Forestry and Natural Resource 

GIS Conference (Kirk and Burk 2005), and is reproduced with this project in Appendix C. 
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1.3 Background and Literature Review 

 A remarkable surge of publications discussing the development and application of 

ecosystem process models in the past decade provides strong evidence for the level of interest in 

the models from both research scientists and, implicitly, their funding agencies. Several 

functional types of ecological process models have been developed, evaluated, and validated, 

from individual tree physiological models up to global carbon balance models. Ecosystem 

modeling for each of these functional types requires different types of considerations (for an in 

depth discussion of modeling considerations at varying ecological scales, see Meentemeyer 1989, 

Field and Ehleringer 1993, Waring and Running 1998). 

 This project addresses the implementation and use of one type of process-based model, 

commonly called ecosystem process models, at a single spatial scale generally referred to as a 

regional scale, with total area on the order of 102 to 105 km2. Due in part to the technological 

advances in computing systems and remote sensing capabilities, regional-scale applications have 

been of particular interest as a new spatial level of study. The scope of this review is limited to 

regional-scale modeling and models that predict forest productivity. Other spatial scales and 

model types are considered only in relation to factors important to regional scale analysis. 

 

1.3.1 Process-based ecosystem modeling 

 Ecosystem process models (EPMs) can be characterized by common traits found among 

different models. Typically, forest EPMs model the primary production portion of the terrestrial 

carbon (C) cycle (Figure 1). The C balance of forests is an important factor in the global C cycle; 

80-90% of plant C and 30-40% of soil C are located in the forested areas around the world 

(Landsberg et al. 1995).  
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Figure 1: Diagram (left) and visualization (right) of the terrestrial carbon cycle. Adapted from 
Aber and Melillo (1991) and Landsberg and Gower (1997), respectively.
 

 The primary output of forest EPMs is Net Primary Production (NPP). NPP is defined as 

the annual accumulation of organic matter (C) per unit of land for a given period of time 

(Schlesinger 1991). NPP is an important value for climate change research because it can be used 

as an indicator of the sequestration of atmospheric CO2 by terrestrial ecosystems (Jiang et al. 

1999). Forest managers are interested in NPP as a surrogate measure of volume growth of forest 

resources (Mäkelä et al. 2000).  

 Typically, EPMs that are applicable at regional scales model the C cycle by focusing on 

the processes of photosynthesis, respiration, and allocation of C within trees or a forest stand. The 

amount of photosynthesis and respiration is usually calculated with a “radiation-use efficiency” 

approach, in which total potential photosynthesis is determined and then reduced based on any 

number of environmental modifiers. Common environmental drivers are climatic factors, such as 
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vapor pressure deficit, and water availability in the soil. The fact that C allocation routines vary 

greatly between models is indicative of the current lack of scientific understanding in C allocation 

processes (Landsberg and Gower 1997).  

 Regional-scale EPMs usually view a forest as a single homogenous unit (i.e., “Big Leaf” 

model) instead of as a set of individual trees. This allows predictions to have a scale-less 

dimension, meaning that the model can be run for any size forest stand or region. Other types of 

process-models can be classified as individual tree models (e.g., Robinson 1999), gap models 

(e.g., Pastor and Post 1986), and global carbon models (e.g., Raich et al. 1991). None of these 

other functional groups of process-based models are considered in this research. 

 In addition to internal structure, another trait of regional-scale EPMs is a heavy reliance 

on modern technologies. Complex computer algorithms are required to model all of the required 

processes. GIS and remote sensing technologies are regularly used to manage input and output 

data across large areas. Without these tools, the implementation of EPMs would not be possible. 

 The two models examined in this project, PnET-II and 3-PG, are generalized Big-Leaf 

type models applied at stand to regional scales. They were selected because of the widespread 

interest in them, their focus on generalized relationships and parameterizations, and the relatively 

few data input requirements. The two models are discussed in detail below, with focus on 

regional-scale application. Other models similar to these are also briefly discussed. 

 

1.3.1.1 PnET-II model 

 The original PnET (Photosynthesis and Evapotranspiration) model (Aber and Federer 

1992) was developed as a generalized ecophysiological model of forest water and carbon 

balances. The model departs from previously published models by specifically attempting to 

condense complex physiological attributes of tree species into a few, lumped generalized 

processes (Landsberg and Gower 1997). A primary objective of the original research was to 

 7



provide a simple, well-validated model of forest ecosystem production for application to issues of 

environmental change (Aber et al 1993). Several versions of PnET have been developed over the 

past decade (Table 1). Of these, PnET-II is the most widely used in the PnET family of models 

and is currently the only version used in studies involving regional-scale applications. Thus, 

PnET-II is the only model in the PnET family considered in this project. 

 

Table 1: Popular versions of the PnET family of ecosystem process models. 

PnET Version Source Description 

PnET Aber and Federer (1992) Original model 
PnET-II Aber et al. (1995) Enhanced version of PnET 
PnET-DAY Aber et al. (1996) Daily time-step variation 

PnET-CN Aber et al. (1997b) Extended version that models nitrogen 
cycle as well as carbon and water cycles 

PnET-BGC Gbondo-Tugbawa et al. 
(2002) Expanded biogeochemical model 

 

 PnET-II is a lumped-parameter model of carbon and water balances that combines 

process-based and empirical components (Figure 2). PnET-II runs on a monthly-time step and has 

no specific spatial dimension, although it is commonly applied at a small watershed to regional 

scales (Aber et al 1995). Although PnET-II was designed for forest ecosystems, it has been 

calibrated for other vegetation types (e.g., Reich et al 1999). The model runs to a steady state with 

no consideration of mortality or succession.  
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Figure 2: Structure and processes of PnET-II (from Aber et al. 1995). 
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 Total canopy photosynthesis is calculated by integrating photosynthesis across canopy 

layers within a “green sponge” canopy architecture, where the canopy is represented as a single 

homogenous mass of thickness equal to the Leaf Area Index (LAI, unit area leaves per unit area 

ground) (Landsberg and Gower 1997). After subtracting out canopy respiration, the maximum net 

C gain is reduced by any limitations of three environmental drivers: temperature, vapor pressure 

deficit, and soil water deficit. Net gains in C are accumulated throughout the year in one pool and 

allocated at year-end to foliage, wood, and fine root pools. Carbon is allocated first to build leaf 

area, calculated as a function of growing degree days and respiration, and then to build root area, 

calculated as a function of leaf area. Wood carbon is calculated as the remaining C after leaf and 

root C are allocated. 

 Standard input variables for PnET-II are categorized as site variables, climate variables 

and vegetation parameters. Site variables include vegetation type, latitude, soil water holding 

capacity and initial biomass content. Climate variables include average monthly values for 

minimum and maximum daily temperature, daily precipitation, and daily amount of incoming 

photosynthetically absorbed radiation (PAR, the portion of the electromagnetic spectrum from 

which plants draw energy for photosynthesis). Vegetation parameters, required for each 

vegetation type, consist of quantitative values that define how a given vegetation type responds to 

environmental conditions. For example, different vegetation types will have varying optimal 

growing temperatures for photosynthesis. Specific PnET-II parameter values are discussed in 

Chapter 2, and parameter values for various forest types are presented in Appendix A.  

 Outputs for PnET-II are provided annually for both the carbon and water cycles. 

Vegetation growth outputs include gross and net photosynthesis, foliage, root, and stem wood 

biomass, and net ecosystem production (NEP, defined as gross photosynthesis minus respiration). 

Hydrologic outputs include annual precipitation, evapotranspiration, and drainage. 
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 PnET-II has been used for several regional scale research applications (Table 2). These 

studies can be classified into three groups: ecophysiological studies (Aber and Driscoll 1995, 

Jenkins et al. 1999), hydrologic studies (McNulty et al. 1994, Aber et al. 1995, Bishop et al. 

1998), and large area forest production estimation studies (Aber et al. 1995, McNulty et al. 1996, 

McNulty et al. 1997, Goodale et al. 1998, Ollinger et al. 1998, Mickler et al. 2002). One 

exception is a recent article (McNulty et al 2000), which uses PnET-II connected to a 

biogeography model and an economic model to examine the effects of climate change on forest 

growth and timber markets. In these studies, the spatial scale (grid cell size) ranges from 1 km2 to 

greater than 50 km2 (Table 2). 

 Without exception, the authors in these studies concluded that PnET-II provided a useful, 

viable tool for addressing the varying regional-scale objectives. Weaknesses of PnET-II for 

various applications were also identified. McNulty et al (2000) noted that PnET-II does not 

consider disturbance (e.g., forest thinning, fire, or herbivory), which can limit its application to 

forest management. McNulty et al (2000) mentioned that relying on limited data for parameters 

(most notably foliar N) are a key concern for model projections. Jenkins et al. (1999) suggested 

that model assumptions caused differences in PnET-II predictions compared to another model, 

TEM (Raich et al 1991). Thus, a solid data set for inputs and parameters that drive the model, 

such as foliar N and soil water holding capacity, is vital. Similarly, Bishop et al. (1998) concluded 

that generalized PnET-II predictions underestimated regional-scale hydrologic response, 

indicating that generalization may lead to bias for some, but not all, outputs. These weaknesses 

are similar to the general weaknesses of process-based modeling previously discussed. 
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Table 2: Summary of regional scale applications using PnET-II. Grid Cell Size is the spatial 
resolution of each cell for which the model is run. 

 

 
Source 

 
Description of Research 

 
Grid Cell Size 

McNulty et al. 
(1994)  

Evaluated regional hydrologic response of 
loblolly pine to climate change in the southern 
U.S. 

0.5° x 0.5° 
~ 50 km x 75 km 

   
Aber et al. (1995) Predicted effects of climate change on forest 

production and water yield in the northeastern 
U.S. 

1 km2

   
McNulty et al. 
(1996) 

Examined role of climate change on regional 
loblolly pine production in the southern U.S. 

0.5° x 0.5°  
~ 50 km x 75 km 

   
Aber and Driscoll 
(1997) 

Evaluated land use, climate variation and N 
deposition on forest N and C cycles in northern 
U.S. 

0.5° x 0.5° 
~ 40-50 km2

   
McNulty et al. 
(1997) 

Explored input scale effects on forest 
productivity and hydrologic yield in the 
southern U.S. 

0.5° x 0.5°  
~ 50 km x 75 km 

   
Bishop et al. (1998) Compared estimates of long-term hydrologic 

runoff in the northeaster U.S. 
1’ x 1’ 

~ 1.8 km2

   
Goodale et al. (1998) Predicted sensitivity of forest production to site 

quality and climate change in Ireland. 1 km2

   
Ollinger et al. (1998) Estimated regional patterns of forest 

production in the northeastern U.S.  
30” x 30” 
~ 1 km2

   
Jenkins et al. (1999) Identified sources of variability in forest 

production estimates in the northeastern U.S.  
0.5° x 0.5° 

~ 40 km x 50 km 
and 60” x 60 “ 

~2 km2

   
McNulty et al. 
(2000) 

Explored linkages between forest growth, 
biogeography and economic models in the 
southern U.S. 

0.5° x 0.5° 
~ 40 km x 50 km 

   
Mickler et al. (2002) Predicted current and future forest biomass 

levels to assess forest productivity and 
wildland fire fuel potential. 

0.5° x 0.5° 
~ 40 km x 50 km 
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1.3.1.2 3-PG model 

 The 3-PG (Physiological Processes Predicting Growth) model is a relatively new 

ecosystem model receiving a lot of attention in the forest modeling community. Developed by 

Landsberg and Waring (1997), 3-PG was designed for use as a practical forestry tool as well as a 

research tool. As with PnET-II, 3-PG is a generalized, monthly time-step radiation use efficiency 

model of forest growth that includes both process-based and empirical components. A key 

difference with 3-PG is the inclusion of allometric relationships, which means that biomass 

outputs are converted into units important to forest managers (e.g., stand density and volume).  

 Simplified relationships among several key ecophysiological processes characterize 3-PG 

(Figure 3).  
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Figure 3: Processes of the 3-PG model (from Tickle et al. 2001). 
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Potential photosynthesis is calculated from the amount of absorbed photosynthetically active 

radiation (APAR) and reduced for any of four environmental modifiers: frost, soil water deficit, 

vapor pressure deficit, and age. The age modifier is unique to 3-PG, and follows the observation 

that as forests age, productivity decreases (Waring and Schlesinger 1985). GPP is determined as a 

set percentage of APAR as defined by a constant quantum canopy efficiency (i.e., the initial slope 

of the light response curve for a given species). NPP, in turn, is calculated as a fixed fraction of 

GPP. This species-specific NPP/GPP fraction (Waring et al. 1998) greatly simplifies model 

complexity, as respiration calculations are no longer required. C is allocated first to roots relative 

to the harshness of the environment (as defined by the environmental modifiers), and then to stem 

and foliage using a simple stem:foliage allometric equation.  

 3-PG site and climate inputs, for the most part, are similar to those for PnET-II. Required 

climatic variables are solar radiation, precipitation, and temperature. Site values include initial 

biomass, available soil water, and current stand age and density. Vegetation parameters include 

quantitative values describing physiological as well as allometric relationships. Specific 

parameters are not discussed in this review chapter. Key 3-PG parameters are discussed in 

Chapter 2. Parameters for several species and cover types are listed in Appendix A. 

 Annual outputs for 3-PG include NPP and root, stem, and foliage biomass. Unlike PnET-

II and most other regional-scale EPMs, however, 3-PG goes beyond calculated NPP and converts 

outputs to variables important to forest resource managers. With number of trees per acre as an 

input value, 3-PG converts NPP into stand volume, stand density, average stem diameter, and 

mean annual increment (MAI, average annual stand growth) using general allometric equations. 

These statistics are vital information for most traditional forest management decisions. 

 In light of how new 3-PG is, few regional scale studies have been conducted using the 

model (Table 3).  
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Table 3: Summary of regional scale applications using 3-PG. Grid cell size is the spatial 
resolution of each cell for which the model is run. 

  

 
Source 

 
Description of Research 

 
Grid Cell Size 

Tickle et al. (2001) Predicted forest productivity over a diverse 
50,000 ha Eucalypt forest in Australia. 25 m2

   
White et al. (2000) Estimated forest and scrub biomass 

accumulation in New Zealand. 1 km2

   
Coops et al. (1998) Assessed use of satellite-derived estimates of 

forest photosynthetic capacity for user with 3-
PG in Australia. 

8km2

   
Coops et al. (2001) Compared patterns of NPP and water use using 

3-PG and BIOME-BGC in southwestern 
Oregon, U.S. 

1 km2

   
Coops and Waring 
(2001a) 

Estimated forest productivity using satellite-
derived inputs in Oregon, U.S. 1 km2

   
Coops and Waring 
(2001b) 

Assessed forest growth under various climate 
change conditions in Oregon, U.S. 1 km2

   
Coops and Waring 
(2001c) 

Explored the use of multiscale remote sensing 
imagery to drive estimates of forest growth in 
Oregon, U.S. 

1 km2

   

 As with PnET-II research, 3-PG was found to be a useful tool for regional scale forest 

growth modeling in all documented studies. These large area studies can be separated into two 

groups: ecophysiological studies (White et al. 2000, Coops et al. 2001, Coops and Waring 2001a) 

and forest production studies (Tickle et al. 2001, Coops et al. 1998, Coops and Waring 2001b). 3-

PG has been shown to predict forest stand growth estimates for a large variety of forest types 

(Table 4), although at this time most research has focused on conifer and Eucalypt species. In 

these studies, 3-PG predictions have been correlated with field-based forest measurements of 

traditional statistics such as stand volume and density. In addition, there is presently one 

documented case of 3-PG being used in an operational environment on a Eucalyptus plantation in 

South America (Almeida et al. 2002). 
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Table 4: Species/forest types used in 3-PG studies. For these forest types, 3-PG stand volume, 
density and growth estimates have been correlated with field measurements. 

 
Species/ Forest Type 

 
Location 

 
Source 

   
Shasta Red Fir Oregon, U.S. Coops et al. 2001 
Ponderosa Pine Oregon, U.S. Coops et al. 2001 
Douglas Fir Oregon, U.S. Coops et al. 2001 
Sitka Spruce Great Britain Waring 2000 
Eucalypt spp. Australia Tickle et al. 2001 
Patula Pine South Africa Dye 2001 
Radiata Pine Australia Landsberg et al. 2002 
Norway Spruce Sweden Landsberg et al. 2002 
Jack Pine Ontario, Canada Peng et al. 2002 
Loblolly Pine North Carolina, U.S. Landsberg et al. 2001 
Hard Beech New Zealand White et al. 2000 
Mountain Beech New Zealand White et al. 2000 

   
 
 
1.3.1.3 Other regional-scale ecosystem process models 

 While PnET-II and 3-PG are popular Big-Leaf EPMs, they are not the only alternatives. 

Several other models, although not considered in this research, deserve mention. FOREST-BGC 

(Running and Coughlan 1988, Running and Gower 1991) is a widely used EPM for modeling C, 

N, and water cycles in forested ecosystems. Requiring only an estimate of LAI to represent 

canopy architecture allows FOREST-BGC to be usable for regional-scale analysis. FOREST-

BGC has been used in a wide variety of research applications (e.g., White and Running 1994, 

Running et al. 1989) and is currently part of NASA’s Earth Observing System (EOS) MODIS 

Land Science program. The CENTURY model (Parton et al. 1987, Parton et al. 1993) is a general 

model of water, C, N, and selected other nutrient cycles in grassland and forest ecosystems. With 

a focus on soil processes, CENTURY provides a different perspective on calculating NPP and is 

used primarily in research. TEM (Raich et al. 1991) models C and N cycles across large land 

areas (i.e., continent to global scale) at a 0.5 degree latitude and longitude resolution. While TEM 
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predictions are correlated with finer scale predictions (Jenkins et al. 1999), the coarse resolution 

limits its applicability for forest management decision making. 

 Each of these alternative models, as well as several others, have received a lot of 

attention and secured their place in the ecological research community (e.g., VEMAP members 

1995). Although this research focuses only on PnET-II and 3-PG, reviewing research that 

involved these other models was valuable. Future research on process-based forest production 

models for operational decision-making should consider the strengths and weaknesses of a wide 

variety of models and their implementations. 

 

1.3.2 Regional-scale natural resource analysis 

 Producing clear definitions and boundaries of what constitutes a specific ecological scale 

is a difficult task. Ecological scales (Figure 4) are identified based on hierarchy theory, whereby a 

complex system is comprised of inter-related subsystems in a hierarchical fashion (Simon 1962).  
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cales as related to temporal and spatial scale (adapted from Jarvis 1995). 

 entirely on regional scale modeling. Regions, in this context, can be defined 

 areas with a common macroclimate and sphere of human activity and 

Thus, regions have both ecological and cultural components, and can be 
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distinguished by relatively similar patterns of climate, geologic history, nutrient supplies and land 

use history.  

 Forest managers regularly make decisions across large land areas as well as in local forest 

stands. These decisions often fall along political (e.g., county or state) or natural boundaries (e.g., 

watersheds or ecoregions). Management decisions at this scale are often holistic, requiring a 

balance of commodity and ecological objectives (Baskent and Yolasigmaz 1999).  

With an emphasis on spatial patterns and ecological processes, regional scale process-based 

modeling provides a valuable tool for addressing these complex and diverse objectives. For 

example, Mickler et al. (2001) concluded that regional scale forest growth modeling studies could 

be used by forest managers to examine the role of climate change on forest production (NPP), 

fuel loads and fire regimes.  

 

1.3.3 Technologies for regional scale natural resource modeling 

 Regional-scale process based modeling would likely be impossible without the use of two 

related technologies: Geographic Information Systems and remote sensing. EPMs by nature are 

extremely complex, requiring a large and diverse data set. By incorporating spatial data from a 

variety of sources, including satellite imagery, variations in environmental conditions across large 

areas can be more effectively included in forest production modeling.  

 Geographic Information Systems (GIS) are defined as computer-based systems that aid in 

the collection, maintenance, storage, analysis, output and distribution of spatial data and 

information (Bolstad 2002). EPMs benefit from GIS for several reasons. First, required input data 

can be acquired from a wide variety of sources and organized seamlessly. Second, GIS provide a 

spatially explicit structure from which to run models, even if the models themselves are not 

spatially explicit. A model can be run for each cell in a raster grid and the results displayed in 

map form. Third, advances in the science of GIS have led to a new suite of spatial analysis tools 
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that can be used to analyze patterns of model inputs and outputs. Currently, two versions of the 3-

PG model have been designed around a GIS. 3-PGS (Coops et al. 1998) uses satellite-derived 

estimates of photosynthetic capacity in a grid cell format as a primary input. 3-PGSPATIAL was 

designed to include spatial layers of climate and soils data as direct inputs. Although PnET-II 

does not have a spatially explicit version, it is linked to a GIS relatively easily (Ollinger et al. 

1998).  

 A second key technology for regional scale modeling is remote sensing. In this context, 

remote sensing can be defined as observation of the earth’s surface by means of reflected or 

emitted electromagnetic energy (Campbell 1996). Remote sensing data are typically collected by 

airborne or satellite sensors and often consist of a stack of layers containing information about 

different segments of the electromagnetic spectrum (e.g., green, red, or near infrared bands). 

Remote sensing data are often classified to provide land cover/land use data. These land 

cover/land use maps are frequently used as the basis for regional scale forest growth modeling 

(e.g., Ollinger et al. 1999, Coops et al. 1998). In addition to cover type, remote sensing 

technology provides means to estimate important biophysical attributes, such as LAI, across large 

land areas (e.g., Gower et al. 1999). Obtaining these data by traditional ground sampling methods 

would be logistically and financially unfeasible for all but the biggest budgets. Together, remote 

sensing and GIS technologies provide the means as well as the tool set for effectively modeling 

regional scale forest growth. 

 

1.4 Data and Tools  

 Regional scale EPM studies typically rely on a combination of publicly available and 

locally developed data. The most important data requirement is land cover/land use for which the 

models are parameterized. Cover type maps are usually interpreted from satellite data (e.g., 

Ollinger et al. 1999, Running et al. 1989), extrapolated from nationwide forest inventory data 

(McNulty et al. 1994), or developed locally. Climate data are either interpolated from regional 
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climate stations or from climate models (Hungerford et al. 1989, Ollinger et al. 1995). Soils data 

are estimated from local research or from the national STATSGO soils database (SCS 1991). 

Forest stand data are summarized from local estimates or from state or nationwide forest 

inventory data. Parameter values are estimated from local studies or comprehensive literature 

searches. This diverse range of data sources implies that no data are ideal for all studies, and that 

specific care should be taken to obtain the most accurate and precise data possible. 

 This project is centered on the implementation of two regional scale EPMs for the 

Arrowhead region of northeastern Minnesota. In order to assess the robustness of the models, 

only freely available and widely used data sets were considered and included. All processing was 

completed using popular software and programming packages, including ESRI ArcView 3.x, 

ArcInfo and ArcGIS 8.x GIS software, ERDAS Imagine 8.x image processing software, the C 

programming language, and the Perl 5.x scripting language. Chapter 2 discusses the specific input 

values and processing steps in detail. 

 

1.5 General Methodology 

 Methodologies used in regional scale modeling studies vary greatly based on resources 

available and study objectives. However, three distinct phases can usually be identified in 

different studies. The first phase involves collecting and compiling the input data and parameters. 

This phase involves any field data collection, analysis, and GIS processing to prepare each unit 

for which the model will be run. This often requires the reorganization of GIS data into a format 

suitable for model runs. The second stage consists of running the models and performing 

sensitivity analyses on model predictions. Sensitivity analysis consists of repeated model runs 

where data input values are systematically changed for the purpose of assessing how sensitive 

model predictions are to varying inputs. The third and final phase involves validating the model 

predictions against field measurements or alternative estimates. Sensitivity analysis and 
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validation help identify sources of bias or error and can help to quantify confidence in model 

predictions. 

 The methodologies used in this research are limited to popular and well-documented 

options. Selected methodologies are described in detail in chapter 2. Chapter 3, which describes a 

framework for implementing regional scale modeling studies, contains descriptions of widely 

accepted alternative methodologies to those used in this project. 

 

 

 20



2 Regional Scale forest production modeling in northeastern Minnesota 
 

2.1 Introduction 

 Ecosystem process models (EPMs) have several potential applications. To date, these 

applications have generally been academic, such as testing hypotheses regarding ecosystem 

processes or evaluating the effects of global change on forest growth. However, there is a large 

amount of interest in the application of EPMs in predicting forest production over large land 

areas.   

 This chapter presents the results of a regional-scale modeling study within a GIS for the 

Arrowhead region of northeastern Minnesota. The objectives of this modeling project are to: 

 1) estimate forest biomass growth for the Arrowhead region of northeastern Minnesota, 

 2) compare model predictions for two popular models at two spatial scales, and 

 3) perform a sensitivity analysis to evaluate model inputs. 

 

 The overarching objective of this research is to evaluate the process of implementing 

regional scale EPMs. Chapter 1 provided background and rationale. The objective of the final 

chapter, Chapter 3, is to identify the core components of regional scale modeling and develop a 

technical and conceptual framework for implementing such models. The experiences gained in 

this modeling project (Chapter 2) provide much of the basis for the modeling framework. While 

this chapter focuses on the methods and results of the model predictions, critical evaluation of the 

modeling process is presented in Chapter 3. 

 

2.2 Study Area 

 The study area for this project is a 5 county area in northeastern Minnesota, an area 

commonly called the “Arrowhead” region of Minnesota (Figure 1). Receding glaciers in the last  
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igure 1: Study area in northeastern Minnesota.
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e age (less than 10,000 years ago) shaped the region, which is geologically identified as the 

uperior Uplands portion of the Canadian Shield. As a result, the area is characterized by exposed 

edrock, extensive mineral deposits, varied topography, thin soils, and a large abundance of 

kes.  The area is bordered on the east by Lake Superior and on the north by Canada. The climate 

 characterized by cold winters, cool summers and an average of 66 cm of precipitation per year. 

 terms of vegetation, the region falls in a transition zone between temperate and boreal forests, 

ntaining predominantly aspen, birch, and white, red, and jack pine in the uplands, and spruce, 

r and tamarack in the lowlands.  

.3 Data 

Both spatial and aspatial data were required for this project. At the onset, we decided to 

se generalized and publicly available data sets. Although this limitation was in small part due to 
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budget constraints, the primary reason was to evaluate model predictions based on a lower-limit 

of data quality. In other words, we wanted to evaluate how well the models worked using the 

most generic data available. 

 All of the data, with the exception of model parameters, were organized within a GIS. 

Data collection and development were the primary emphases for the early phases of this project. 

The required data can be grouped into four general categories: forest inventory data, climate 

variables, site variables, and model parameters. Each of these data categories, as well as the 

collection and development processes, is described below. Sample maps of key variables are 

included in Appendix A. 

 

2.3.1 Forest Inventory and Analysis (FIA) 

 The primary mission of the U.S. Forest Service FIA unit is to quantify and monitor forest 

conditions across the entire country (Jakes, 1980; Leatherberry et al., 1995). Through extensive, 

periodic surveys, the FIA group provides forest area, volume, growth, disturbance, and mortality 

estimates. These data are used for a vast variety of research and applied applications. 

 The time period considered in this model consists of the years between the 4th and 5th 

Minnesota FIA surveys, 1977-1990 (Jakes, 1980; Leatherberry et al., 1995). The study area 

follows the boundary of the Minnesota Aspen-Birch FIA unit, which encompasses 5 counties in 

northeastern Minnesota (Figure 1). Also, the four forest types evaluated in this analysis were 

aggregated from the general FIA forest type classes. In essence, the FIA surveys provided the 

scope of this project. 

 Two types of FIA data are used in this project. First, the forest cover type map used in 

this analysis was derived from the 1977 Minnesota FIA survey map (Jakes, 1980). The FIA 

survey uses a stratified sampling inventory design based on cover type. Prior to any field visits, 

forest cover types were delineated off of aerial photographs and summarized in a statewide map.  
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Paper copies of the cover type map were delivered with the 1977 summary report. No digital 

copies are known to exist. As a result, the paper map was converted to a digital image with a 

four-step process. First, the paper map was scanned on a Microtek 9600XL flatbed scanner. 

Second, the map was georegistered to a geographic coordinate system, matching the lines of 

longitude and latitude included on the map. Third, the image was classified based on the map’s 

cover type color schema. The final step involved converting the image to 1x1 km resolution raster 

grid. A second, 10x10 km resolution raster grid was created from the 1x1 km grid using a 

majority-area decision criterion. 

 This classification and aggregation process undoubtedly introduced errors into the cover 

type data. For cells containing multiple cover types or distortions (e.g. highway lines or paper 

creases) the cover type was manually classified. Approximately 4000 of the over 25,000 grid cells 

in the study area required manual classification. Similarly, when the majority-area aggregation 

failed (i.e., when two classes had the same total area within a cell) the class was assigned 

manually. As a quality control measure, several of the manually classified cells where changed in 

order to maintain the proportions of each cover type described in the FIA tabular summaries. I 

feel that the errors resulting from this process are acceptable since we are interested in the overall 

trends, not in predictions for specific areas. 

 The second type of FIA data used in this project are forest volume and growth estimates 

used to validate model predictions. These standard data are provided by the FIA Eastwide Data 

Retrieval database (Hansen et al., 1992) and have been used in other forest production modeling 

studies (Brown and Schroeder, 1999). The FIA data were summarized by general forest type, and 

are used primarily for model validation. 

 

2.3.2 Climate variables 

 Both 3-PG and PnET-II require monthly temperature, precipitation and solar radiation 

values as inputs. Long-term monthly temperature and precipitation norms were acquired for 
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several climate stations within and near the study area (Baker et al. 1985; Minnesota Climatology 

Working Group, 2003), and linked to the USGS Geographic Names Information System spatial 

locations (U.S. Department of Interior, 1987). A series of raster grids were interpolated from 

these climate station data, including monthly average rainfall and monthly minimum, maximum 

and mean temperature. The interpolation method for all layers consisted of an Inverse Distance-

Weighted (IDW) algorithm with squared exponential weighting. Thiessen Polygon interpolation 

and several different IDW weightings were considered. However, a squared exponential IDW 

approach appeared to most smoothly depict trends across all variables. Since different 

interpolation methods can provide a range of predictions, it is recommended that additional 

interpolation methods be considered in any further research.  

 Freely available solar radiation data from the National Solar Radiation Database were 

found for only two cities within the study area, Duluth and International Falls (Maxwell et al., 

1995).  For these data, monthly grids were linearly interpolated along a latitudinal gradient, which 

produced only a minor change in solar radiation across the entire study area. This is not 

considered to be a limitation, particularly considering the moderate spatial extent of the study and 

the coarse spatial resolution of the model runs. Sample maps of key climate variables are included 

in Appendix A.  

 

2.3.3 Site variables 

 The primary site data sets required for the two models are forest type and soil variables. 

The forest type (also called a cover type) is the general vegetation type for which the two models 

are parameterized. For this study, four general forest types are used: Aspen-Birch (39% of the 

study area), Spruce-Fir (26%), Pine (5%), and Maple-Basswood (2%). The remainder of the study 

area (28%) consists of non-forest areas, including open water, wetlands, developed areas, and 

bare land. The models were not run for these non-forest areas. Forest type data were adapted from 
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the 1977 FIA forest type map as described above in section 2.3.1. Although the four forest types 

are not the only forest types found in the study area, they represent the dominant. 

 The two soil variables of interest were soil water holding capacity (SWHC) and soil 

texture type. SWHC is the total water capacity available to plants within the soil horizon. SWHC 

data were derived from the nation-wide STATSGO soil data set (SCS, 1991) using the following 

calculation:   

 

 
awcl awch *(laydepl - laydeph)

2
SWHC +

=∑     [1] 

 

 where awcl and awch are the available water capacity minimum and maximum for a 

given soil layer, respectively, laydepl is the depth from the soil surface to the upper boundary of 

the layer, and laydeph is the depth from the soil surface to the lower boundary of the layer. These 

variable names are standard for the STATSGO database. Lathrop et al. (1995) found the 

STATSGO and SSURGO databases provided unreliable estimates of SWHC for the New 

England area. They elected to use a constant SWHC value for all areas. We feel that the large 

variation of SWHC in the northeastern Minnesota is a significant factor in determining forest 

growth. Thus, we accept the errors in the data and feel that the overall trends are more important 

than errors at specific sites. 

 In addition to forest type and SWHC, 3-PG requires an additional soil variable and 

several forest stand variables. The soil variable is soil texture class, which is also available in the 

STATSGO database. Processing soil texture class consisted of reclassifying the STATSGO 

texture classes into the 3-PG texture classes. Required forest stand characteristics include initial 

standing biomass, stand density (trees per hectare), and stand age. For initial model runs, these 

values were extracted from distributions in the FIA database for each cover type and randomly 

assigned to grid cells. However, this significantly altered production estimates. 3-PG applies an 
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age modifier in the primary production routine (see section 1.3.1.2 in Chapter 1), which lowers 

production for older forest stands. In addition, 3-PG includes a mortality component in the form 

of the “-3/2 self-thinning rule”. By randomly assigning both density and age classes, unrealistic 

combinations of two values were included, which led to a huge variation in production estimates. 

Although the age and mortality modifiers are important to forest production estimates, they 

appear to require a more detailed and spatially explicit data set than was compiled for this project. 

As a result, a standard set of starting conditions was used for each forest type in order to remove 

these large effects. With this decision, average forest production predictions from both models 

could be compared.  

  

2.3.4 Parameters 

 Process-based ecosystem models use parameter values to distinguish the characteristics 

and responses to stimuli of different vegetation types. In this project, four general forest types 

were selected: Pine, Aspen-Birch, Spruce-Fir, and Maple-Basswood. A parameter file, consisting 

of several dozen parameter values, is required for each forest type and each model. The 

compilation of parameter values for the two models is discussed below. 

 For PnET-II, parameter files for the Aspen-Birch, Maple-Basswood and Pine types were 

previously developed for a modeling project at the Cedar Creek Natural History Area in central 

Minnesota (Reich et al., 1999). For the Spruce-Fir type, all parameter values were the same as 

those of the BOREAS research project in Canada (Sellers et al., 1997).  

 For 3-PG, no known complete parameter sets were found for northern temperate 

hardwood forests. Documented parameters exist for conifer forests of the Pacific Northwest 

(Coops and Waring, 2001a), loblolly pine in the southern states (Landsberg 2001), and a variety 

of forest types in Australia and New Zealand (Landsberg and Waring, 1997). Thus, parameter 

sets had to be estimated for the four forest types used in this study. Where available, individual 

parameter values were found in the literature. For the remaining parameters, either the default 
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values or estimates based on other documented parameters were used. A series of test scenarios 

were run using the range of estimated values in order to ensure the parameter combinations were 

comparable to the PnET-II predictions and relatively near documented NPP estimates in the area 

(e.g., Reich et al, 1999, Goetz and Prince, 1998). Thus, at least in part, the 3-PG parameters were 

calibrated against the PnET-II parameters. This may provide a bias in modeled estimates. In 

further research, these parameters should continue to be assessed and refined.  

 

2.4 Methods 

 The overarching theme of this research is evaluating the technical implementation of 

EPMs. As a result, the description of methods emphasizes issues related to model 

implementation. This means that, in effect, the models are being treated as “black boxes.” Four 

methodological categories are discussed: data preparation, technical implementation, sensitivity 

analysis, and spatial analysis.  

 

2.4.1 Data Preparation 

 All of the spatial data were organized within a GIS. Two primary lattice grids (in the 

form of point feature shapefiles) were created for the study area, one for each of the spatial scales 

of analysis (1x1 km and 10x10 km cells). Each lattice point represents the center location of a 

grid cell at the given spatial resolution. The attribute data for all required environmental and site 

data (described above) were spatially joined with these primary shapefiles, resulting in shapefiles 

with over 100 attributes. This attribute table was then extracted to a comma separated value (csv) 

file that was used for model runs. 
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2.4.2 Model Implementation 

Both 3-PG and PnET-II have multiple model formats, including some that are spatially-

explicit. For this study, we elected to use comparable versions that consisted of stand-alone 

software executables compiled from C/C++ source code.  The 3-PG “Console” version is 

available from the developers at no cost1. PnET-II is also freely available in a C version from the 

authors’ web-site2. We chose, however, to use a modified version of the PnET-II code (Radtke, 

1999) because of familiarity within our lab and because it had been used for another study in 

Minnesota (Reich et al., 1999).   

The process flow is diagrammed in Figure 2. The Perl 5.x scripting language was used 

extensively for data preparation and proved to be an invaluable tool in integrating the various 

modeling and GIS software. With the capability to directly execute both models, Perl also 

provided an efficient means for large batch runs. Code for the primary Perl scripts used in this 

research are included in Appendix B.  
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igure 2: Process flow of model implementation. Sequences for which Perl was used are identified. 

                                                         
3-PG code available at: http://www.ffp.csiro.au/fap/3pg/  
nET code available at: http://www.pnet.sr.unh.edu/ 
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 The model was run for each forest grid cell in the study area. This resulted in 25,885 runs 

of each model for the 1 km scale and 299 runs each for the 10 km scale. Additional batch runs 

were subsequently completed for sensitivity analysis (described below in section 2.5.5).  

 Model calibration is often the initial step for EPM studies. In this study, calibration runs 

were used in order to evaluate the estimated parameter values. However, the models were not 

calibrated against “real world” forest observations (although they were validated against other 

regional studies). It was hypothesized that these well-established models would replicate forest 

production in the region. 

 

2.4.3 Sensitivity Analysis 

 Latin Hypercube Sampling (LHS) was selected as the sensitivity analysis technique for 

this project. LHS is an extension of stratified sampling for which all portions of the full range of 

each input variable are explicitly represented. LHS has been found to be a more efficient 

sampling method than random Monte Carlo techniques (McKay et al., 1979). The LHS algorithm 

(Figure 3) was implemented as described by Walters (1994) and written in Perl 5.x within the 

batch run script (code included in AppendixB). After all sensitivity runs were completed, the 

relative effects of the input were analyzed with correlation analysis and simple linear regression. 

 
F
  

 

1) Select number of input configurations (i.e., number of runs), N 
2) Identify the M variables of interest and the range of each variable (Mmin, Mmax) 
3) Calculate the interval width of each variable: 
 Mwidth = (Mmax – Mmin) / N 
4) Randomly select combinations of intervals (Mint) for all variables of interest, and ensure 
    that there are no duplicate combinations. 
5) Assign values (Mvalue) to use in the model run for each variable. This requires  
    identifying the value at the lower end of the selected interval, and then randomly selecting
   a value within the interval width: 
 Mvalue = Mmin + (Mint * Mwidth) + (rand(0,1) * Mwidth) 
    where rand(0,1) is a random number between 0 and 1 
6) Run the model with each set of Mvalue combinations 
igure 3: Pseudo-code for the Latin Hypercube Sampling Algorithm. 
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2.4.4 FIA Validation Analysis 

 Additional calculations were required in order to compare modeled estimates of NPP 

against the FIA database. For this study, an area-weighted, regression-based approach (Brown 

and Schroeder 1999) was used to convert volume growth estimates from the FIA database into 

NPP production estimates. This approach uses a relationship between Growing Stock Volume 

(GSV, or the volume of commercial tree species) and Aboveground NPP based on empirical 

studies. Biomass Expansion Factors are calculated for each county, general forest type, and stand-

size class combination, which are in turn applied to the net annual growth and mortality of GSV 

to convert them to estimates of biomass. NPP estimates are calculated as the sum of net annual 

biomass production and annual mortality. Once NPP estimates are calculated for each forest 

type/stand size combination, the estimates are aggregated to a county level using area-weighted 

averaging. Brown and Schroeder (1999) found significant differences for pine, spruce-fir, and 

hardwoods. Thus, for this analysis, the maple-basswood and aspen-birch groups are combined.  

 

2.4.5 Spatial Analysis 

 Two methods were used to evaluate spatial patterns of forest production estimates. First, 

the Moran’s I test for spatial autocorrelation was calculated. Second, variogram models were fit 

to the 1 km resolution estimates. These techniques provide methods for evaluating spatial patterns 

as well as comparing model estimates. Spatial autocorrelation is the intuitive notion that objects 

near each other are more likely to be similar than objects far apart. Moran’s I quantifies spatial 

autocorrelation by using a weighted correlation coefficient to test for departures from spatial 

randomness (Cliff and Ord, 1981). The value for Moran’s I falls between -1 and 1, where 0 equals 

spatial randomness and negative or positive numbers indicates the level of negative or positive 

autocorrelation, respectively. For this project, Moran’s I was calculated using the S-Plus for 

ArcView 3.x extension (S-Plus, 1998). 
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 The second spatial analysis tool used is a variogram model. A semi-variogram 

(commonly shortened to variogram) measures spatial autocorrelation by estimating the variance 

of observations as a function of the distance between the observations (Isaaks and Srivastava, 

1989). A variogram is calculated as: 

 2
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= ∑ v−            [2] 

 where ( )hγ = the semivariance for lag-distance h, N is the number of observations for lag 

distance h, and vi and vj are each pair of observed values h distance apart. The plotted variogram 

(figure 4) has the increasing lag distances on the X axis, and the variance on the Y axis. A 

variogram is useful for two reasons. First, it provides a visual tool for spatial data exploration of a 

continuous variable, similar to the use of histograms for univariate data. For example, a 

variogram supplies an estimate of overall population variance (the sill), the spatial extent of 

autocorrelation (the range) and an estimate of measurement error or bias (nugget effect). The 

second primary use of a variogram model is to define distance-based weights for a spatial 

interpolation method called kriging. This study used variograms exclusively as a spatial data 

exploration tool. All variogram analysis was done in the Surfer 8.0 software (Surfer, 2003). 

 

 

 

 

 

 

Figure 4: S

  

 

ample variogram model (from Bolstad, 2002). 
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2.5 Results & Discussion 

 Four sets of model runs are compared, consisting of a 1x1 km and a 10x10 km set for 

each of the two models. Although both models provide a variety of outputs, only aboveground 

biomass growth estimates are evaluated. Aboveground NPP (ANPP) is the sum of foliage and 

stem production for the year (ANPP is shortened to NPP for this analysis). This limited analysis 

was chosen for two reasons. First, forest managers are usually more interested in above ground 

growth (particularly stem growth) than below ground growth. Second, the 3-PG model stores 

only cumulative component biomass pools, not annual production. Thus, modification of the 3-

PG code would be required to extract component production estimates. 

 The mean NPP estimates for the four modeling sets ranges from 783.2 to 820.9 g C m-2 

yr-1, with standard deviations between 218.7 and 255.0 g C m-2 yr-1 (See Table 1 for all summary 

statistics). Thus, in the most general sense, all model predictions fall in a comparable range. More 

detailed analysis of spatial resolution effects within each model, inter-model comparison, spatial 

analysis and sensitivity analysis are presented below.  

 

2.5.1 Summary Statistics 

Summary statistics of the four model runs are included in Table 1. Figure 5 contains 

histograms of the 1x1 km and 10x10 km NPP estimates. In aggregate, the data are multi-

modal at both resolutions with no discernable pattern. This is explained by the forest 

type, for which the models are parameterized. Separating by cover type results in 

unimodal distributions for all cover types except for the 10x10 km Aspen-Birch group, 

which is bimodal. Overall, none of the cover type predictions are normally distributed 

(chi-square test for normality, p < 0.001). As a result, non-parametric tests are used for 

comparison of estimates. 
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Table 1: Univariate data summary for PnET-II and 3-PG model runs. 

St
Overall 
  Count 
  Minimum 
  Maximum 
  Mean 
  Median 
  Standard D
  Coef. Of Sk
Pine 
  Count 
  Minimum 
  Maximum 
  Mean 
  Median 
  Standard D
  Coef. Of Sk
Spruce-Fir 
  Count 
  Minimum 
  Maximum 
  Mean 
  Median 
  Standard D
  Coef. Of Sk
Aspen-Birch
  Count 
  Minimum 
  Maximum 
  Mean 
  Median 
  Standard D
  Coef. Of Sk
Maple-Bass
  Count 
  Minimum 
  Maximum 
  Mean 
  Median 
  Standard D
  Coef. Of Sk
 

 

 

 

 

 

 

 NPP Estimates (g C m-2 yr-2) 
atistic PnET 1k PnET 10k 3-PG 1k 3-PG 10k 

    
25885 299 25885 299 
478.5 425.1 444.1 504.3 
1250.0 1097.9 1106.0 1173.5 
842.8 783.2 788.8 820.9 
1018.7 832.1 951.6 823.0 

eviation 255.0 218.7 246.6 233.8 
ewness -0.34 -0.30 -0.33 -0.17 

    
1720 15 1720 15 
707.6 706.8 673.7 615.4 
836.0 784.0 819.2 803.3 
783.2 757.9 729.1 713.5 
788.0 760.9 734.0 705.7 

eviation 17.9 19.3 18.9 77.0 
ewness -1.15 -1.16 -0.23 -0.001 

    
9599 97 9599 97 
478.5 425.1 444.1 504.3 
561.2 527.4 529.8 549.3 
524.9 494.3 482.7 527.5 
525.0 492.6 480.0 527.5 

eviation 9.4 19.2 20.8 9.26 
ewness 0.02 -0.52 -0.79 -0.05 
     

13658 181 13658 181 
964.4 723.5 924.1 712.5 
1250.0 1097.9 1106.0 1173.5 
1064.0 936.6 1003.4 984.5 
1062.9 935.0 1001.2 1050.2 

eviation 33.6 99.3 37.7 123.7 
ewness 0.60 -0.18 -0.32 -0.91 

wood     
908 4 908 4 

767.8 855.9 728.3 806.43 
1046.6 918.5 968.7 1010.7 
989.3 889.0 911.1 898.1 
1008.8 889.2 915.6 862.8 

eviation 55.1 25.3 44.1 85.8 
ewness -2.12 -0.09 -2.43 0.70 
34



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: H
cells, with
 

 

istograms for prediction estimates by cover type. The top two graphs are for the 25885 1x1 km 
 log scale frequency. The bottom two graphs are for the 299 10x10 km cells. 
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2.5.2 Inter-model Comparison 

 Figure 6 provides a scatterplot of the model predictions for the two spatial scales. In 

general, the model predictions are in relative agreement. However, there are some notable 

differences. At the finer spatial resolution (1x1 km), PnET-II predictions are significantly higher 

than the 3-PG estimates for all cover types (Wilcoxon Rank-Sum Test, p<0.001, Table 2). For the 

10x10 km resolution, however, there are no systematic patterns across all cover types. The 

scatterplots also illustrates the relative variance in estimates between the two models. For the 

equilibrium PnET-II model, the variation within each cover type is relatively low, while the non-

equilibrium 3-PG estimates vary over a much wider range. Furthermore, if the forest age class 

distributions were accounted for in the 3-PG model, the variation would be even larger.   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Scatterp
1x1 km cells, and

 

 

lot of model estimates for the 3-PG and PnET-II models. The top figure is for the 25885 
 the bottom for the 299 10x10 km cells. The diagonal lines indicate a 1:1 ratio. 
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Table 2: Comparison of model predictions. Z-scores and p-values are based on Wilcoxon Rank-Sum tests 
between the estimates at the same scale for the two models. 

 1x1 km Resolution 

Cover Type Overall Pine Spruce-Fir Aspen-Birch Maple-Basswood

No. Cells 25885 1720 9599 13658 908 
Model PnET-II 3-PG PnET-II 3-PG PnET-II 3-PG PnET-II 3-PG PnET-II 3-PG 
Mean  

(Std. Dev) 
842.8 

(255.0) 
788.8 

(246.6) 
783.2 
(17.9) 

729.1 
(18.9) 

524.9 
(9.4) 

482.7 
(20.8)

1064.0 
(33.6) 

1003.4 
(37.7) 

989.3 
(55.1) 

911.1 
(44.1) 

Z-Score  
(p-value) 

 
190.9 (< 0.001) 

 
47.6 (< 0.001) 

 
109.0 (< 0.001)

 
108.2 (< 0.001) 

 
30.9 (< 0.001) 

 10x10 km Resolution 
No. Cells 299 15 97 181 4 

Model PnET-II 3-PG PnET-II 3-PG PnET-II 3-PG PnET-II 3-PG PnET-II 3-PG 
Mean  

(Std. Dev) 
783.2 

(218.7) 
820.9 

(233.8) 
757.9 
(19.3) 

713.5 
(77.0) 

494.3 
(19.2) 

527.5 
(9.26)

936.6 
(99.3) 

984.5 
(123.7) 

889.0 
(25.3) 

898.1 
(85.8) 

Z-Score  
(p-value) 

 
21.1 (< 0.001) 

 
120 (< 0.001) *

 
12.0 (p < 0.001)

 
5.5 (< 0.01) 

 
21 (< 0.001) * 

* For the two 10x10 km cover types with less than 20 observations, the Exact Wilcoxon Rank-Sum Test is 
used. For those two, reported scores are for the “w-scores”, not the “z-scores”. 
 

2.5.3 Scale Analysis 

 On a per-meter basis, increasing spatial resolution has a significant effect on model 

predictions. That is, mean predictions were significantly different between the 1x1 km and 10x10 

km predictions for both models and all cover types (Wilcoxon Rank-Sum Test, p < 0.001, Table 

3). In all cases, the 10x10 km resolution NPP estimates were lower than the 1x1 km estimates. 

Aggregating data and removing heterogeneity likely mitigated or removed the extreme scenarios 

that would lead to higher model predictions. This may also be explained by the aggregation 

methods. In this project, continuous data were aggregated using a straight averaging function 

while categorical data were aggregated with a block-majority rule. Thus, heterogeneity was lost 

through averaging. Alternative approaches, such as weighted averaging, might help retain 

heterogeneity. 

 Table 3 shows the effects of aggregation on cover type distributions. The block-majority 

aggregation rule resulted in a relative increase in the most prevalent cover type (Aspen-Birch) and 

a relative decrease in all other cover types. In this study, Aspen-Birch was the most productive 
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cover type as well as the most prevalent. In regions where the most prevalent cover type is not the 

most productive, the effects of aggregation may be even more pronounced. 

 
Table 3: Comparison of scale effects. Z-scores and p-values are based on Wilcoxon Rank-Sum tests 
between the 1x1 km and 10x10 km estimates for the same model.  

 Cover Type 

 Overall Pine Spruce-Fir Aspen-Birch Maple-Basswood

Spatial 
Resolution 

1x1 km 10x10 
km 

1x1 km 10x10 
km 

1x1 km 10x10 
km 

1x1 km 10x10 
km 

1x1 km 10x10 
km 

Number of 
Cells 

25885 299 1720 15 9599 97 13658 181 908 4 

% Area 100 100 6.6 5 37.1 32.4 52.8 60.5 3.5 1.3 

PnET-II 
Mean  

(Std. Dev) 

 
842.8 

(255.0) 

 
783.2 

(218.7) 

 
783.2 
(17.9) 

 
757.9 
(19.3) 

 
524.9 
(9.4) 

 
494.3 
(19.2)

 
1064.0 
(33.6) 

 
936.6 
(99.3) 

 
989.3 
(55.1) 

 
889.0 
(25.3) 

  
Z-Score  
(p-value) 

 
29.78 (< 0.001) 

 

 
6.68 (< 0.001) 

 
16.97 (< 0.001)

 
18.09 (< 0.001) 

 
4.22 (< 0.001) 

3-PG  
Mean  

(Std. Dev) 

 
788.8 

(246.6) 

 
820.9 

(233.8) 

 
729.1 
(18.9) 

 
713.5 
(77.0) 

 
482.7 
(20.8) 

 
527.5 
(9.26)

 
1003.4 
(37.7) 

 
984.5 

(123.7) 

 
911.1 
(44.1) 

 
898.1 
(85.8) 

   
Z-Score 
(p-value) 

 
29.34 (< 0.001) 

 
5.46 (< 0.001) 

 
5.93 (< 0.001) 

 
4.72 (< 0.001) 

 
2.14 (0.032) 

 

 An interesting effect of aggregation in this analysis is that there were no systematic 

changes in the patterns of variations within and between cover types. For example, aggregating 

the Spruce-Fir cover type led to an increase in variation for the PnET-II predictions, but a 

decrease in variation for the 3-PG predictions. The reverse pattern is true for the Maple-

Basswood cover type. This suggests that aggregation may have non-uniform and non-linear 

effects between the mean and variance. Thus, it appears unsafe to assume that aggregating data 

will have a uniform and linear influence on model predictions.  

 

2.5.4 Spatial Analysis 

 Figure 7 provides maps of the NPP predictions for the two models and two spatial scales. 

From visual observation, it appears that the data are spatially autocorrelated. Some general trends 
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are discernable. Areas of lower productivity are found in the northwest section of the study area. 

This makes sense considering the extensive wetland systems in the area where forest growth is 

limited. Much of the Spruce-Fir is located in this area. Conversely, the area of highest 

productivity is located in the south central portion of the study area that contains the more 

productive upland forests such as Aspen-Birch and Maple-Basswood. 
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igure 7: NPP predictions for the two models and two spatial resolutions. 

Two measures of spatial autocorrelation were calculated: Moran’s I for both models and 

solutions, and variograms for the 1x1 km scenarios. Variograms were not calculated for the 

0x10 km scenarios because of the relatively low ratio between the cell width (10 km) and the 

verall spatial extent (360 km). The Moran’s I autocorrelation index values indicate a positive 

atial autocorrelation for all four modeling scenarios, with the two 1x1 km scenarios having a 
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similar and higher autocorrelation than the 10x10 scenarios (Table 4). The positive 

autocorrelation matches a visual interpretation of the NPP maps in Figure 7. However, the 

decrease in autocorrelation with the aggregated data is surprising, given the clumping on the 

maps (although the clumping may be a function of the categorical grouping method). This 

decreased autocorrelation could possibly be due to the large perimeter and relatively high number 

of no-value cells of the coarse data. 

 
Table 4: Moran’s I spatial autocorrelation index values for the two models and resolutions. 
 

Model Spatial 
Resolution 

Moran’s I 
Statistic 

PnET-II 1x1 km 0.58 
 10x10 km 0.32 

3-PG 1x1 km 0.56 
 10x10 km 0.32 

 
 
 The variogram analysis also indicates similar spatial patterns between the two models 

(Table 5, Figure 8). Both show spatial autocorrelation over a range of up to 65 km. However, 

both models show the peculiar pattern of having the variogram model level off and then rise again 

(Figure 8). Thus, the selected exponential model with nugget effect is not a very good fit. No 

better model forms were found. The second rise in variance may be a result of the clumping of 

similar values in the study area due to the large influence of cover type. It may also be due to the 

relatively small range of NPP estimates (450-1200 g C m-2 yr-1) over the region.  

 
Table 5: Variogram parameters for the 1x1 km model runs 
 3-PG NPP PnET-II NPP 
Model Exponential with nugget effect Exponential with Nugget Effect 
Sill 56000 63000 
Nugget Effect 38000 45000 
Maximum Range 65,000 m 59,000 m 
Minimum Range 20,500 m 21,000 m 
Anisotropy Ratio 2.5 2.5 
Direction of Max Continuity 60o north of east 60o north of east 
Direction of Min Continuity 30o south of east 30o south of east 
 
 Both variograms have an anisotropic (i.e., directional) pattern, which was identified by 

calculating variograms in different directions and comparing the ranges. The direction of 
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maximum continuity is in a north-northwest direction. This matches the primary geologic patterns 

in the region, including the hilly range that extends along the Lake Superior shoreline. All 

together, both models appear to have similar spatial patterns of NPP predictions. 

 

Direction: 0.0   Tolerance: 90.0
3-PG 1x1 km NPP Omnidirectional Variogram

Direction: 0.0   Tolerance: 90.0
PnET-II 1x1 km Omnidirectional Variogram
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Figure 8: Variogram models for the 1x1 km runs. PnET-II variograms are on the left and 3-PG variograms 
are on the right. The top row contains omnidirectional variograms. The middle and bottom rows contain 
variograms for the direction of maximum and minimum continuity, respectively. The dotted line represents 
the mean paired observations variation for each lag distance. The solid line is the omnidirectional 
variogram model fit described in table 5. 
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2.5.5 Sensitivity analysis  

 Sensitivity analysis was conducted for 100 randomly selected grid cells across all cover 

types. For both models, three input variables were chosen for sensitivity analysis: SWHC, 

temperature and precipitation. Sensitivity analyses are commonly performed on both parameters 

and input variables. For this project, however, the objective was only to compare common input 

variables. Values were chosen uniformly from the range of observed values in the region for 

SWHC (35 – 750 mm). For temperature, all monthly values were varied up to 5 degrees C from 

observed values. For precipitation, monthly values were varied up to 5 cm. These values were 

selected to represent a large range of variation over the course of the year. Monthly values were 

not varied individually because of the very large increase in processing that would be required. 

 The first round of analysis consisted of 100 repetitions, with each variable altered 

individually. Simple correlation analysis was conducted on the change in the variable against the 

change in baseline NPP from the main model runs (Table 6).  

 
Table 6: Correlation coefficients of changes in individual input variable vs. change in predicted NPP. 

 Correlation Coefficient (R) 
Variable PnET-II 3-PG 

Temperature 0.84 0.71 
Precipitation 0.13 0.20 

SWHC 0.21 0.07 
 

 The second analysis consisted of varying all three variables simultaneously using Latin 

Hypercube Sampling (see section 2.4.3). Regression analysis was used to evaluate the relative 

influence of each variable on the overall change in NPP from the baseline values. Surprisingly, 

temperature was the only significant variable (p < 0.0001) when all three variables were included 

in the regression fit. A simple linear regression fit of change in temperature on change in 

predicted NPP resulted in an R2 = 0.62 for the 3-PG run and R2 = 0.70 for the PnET-II runs. 

 Overall, this sensitivity analysis illustrates the importance of understanding the influence 

of various inputs on model outputs. In this study, temperature was by far the most important input 
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variable evaluated. As such, special care should be taken in developing the temperature data set. 

For this case study, a simple inverse-distance weighted (IDW) interpolation technique was 

applied to the long-term normal monthly temperature values for climate stations in the region. 

IDW interpolations typically produce a “bullseye” effect (e.g., see sample maps in Appendix A), 

with a sharper change in interpolated values nearer to sample locations. Looking back, other 

interpolation techniques might have been preferable, such as a regional regression approach. 

 

2.5.6 Validation 

 Model validation was not performed for any specific location within the study area. 

Because our objectives focus on regional forest production estimates, we chose to only compare 

modeled estimates against those from other studies in the region and against aggregated estimates 

from the FIA database. Table 7 compares NPP predictions for previous studies within or near our 

study area. In all cases but one, both the PnET and 3-PG estimates fell below the upper range of 

estimates from the other studies. However, in all cases, the minimum estimates from the other 

studies were well below the minimum estimates from this study. Thus, the predictions in this 

study may have an upward bias on NPP estimates. 

 
Table 7: Comparison of published NPP estimates against estimates from this study. 
  NPP Estimate Range (g C m-2 yr-1) 

Cover Type Source External PnET 3-PG 
Research studies     
Pine Fassnacht & Gower, 1996 390 – 850 707 – 836 615 – 819 
Maple-Basswood Fassnacht & Gower, 1996 290 – 1150 768 – 1047 728 – 1011 
Spruce-Fir Hall et al., 1992 40 – 572 425 – 561 444 – 549 
Aspen-Birch Hall et al., 1992 190 – 1199 724 – 1250 713 – 1174 
FIA-based studies     
Hardwood species Brown & Schroeder, 1999 410 – 800 724 – 1250 713 – 1174 
Softwood species Brown & Schroeder, 1999 210 – 600 425 – 836 444 – 819 
Pine Recalculated from Brown & 

Schroeder 1999 
151 – 569 707 – 836 615 – 819 

Spruce-Fir Recalculated from Brown & 
Schroeder 1999 

185 – 438 425 – 561 444 – 549 

Hardwood species Recalculated from Brown & 
Schroeder 1999 

259 – 1197 724 – 1250 713 – 1174 
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  Another form of validation is to compare NPP estimates against estimated growth 

between the FIA inventory years. As described above in section 2.4.4, Brown & Schroeder (1999) 

used a regression-based approach to estimate NPP from the FIA database. Table 6 also contains 

these county-level aggregated mean estimates for the 5 counties in our study area, as well as the 

range of values found by reapplying the Brown and Schroeder calculations to the 1977 and 1990 

Minnesota FIA survey results. As with the research studies, these FIA-based data suggest model 

estimates may have a large upward bias. This is most evident in the Pine and Spruce-Fir cover 

types where there is no overlap between estimate ranges for all cases but one. The regression 

coefficients used in Brown and Schroeder (1999) and Schroeder et al. (1997), and reapplied in 

this study, were generalized for the entire Eastern U.S. Thus, they may not be appropriate for the 

finer scale of analysis in this study.  

 Compared against all other studies combined, it is apparent that our study fails to capture 

scenarios of lower biomass production. Low NPP may be caused by several factors such as site 

conditions and forest age structure. In this study, a representative age range of 30-60 years was 

used. Estimates may be improved modeling the full range of age distributions in the study area 

rather than by relying on this representative age range. Similarly, site variables such as SWHC 

were derived from generic data sources. In all, improvements in data quality and detail may likely 

improve the overall forest production estimates in the region. 

 

2.6 Conclusions 

 One of the most significant observations of this study was the large effect forest cover 

type had on production estimate variation. Particular care should be made in both mapping the 

cover type and in parameterizing the models for each cover type. This is especially true for the 

equilibrium PnET-II model. For the 3-PG model, we elected to only evaluate the general 

production estimates for common stands in the middle of their rotation age. By more accurately 
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incorporating forest age structure, production estimates would likely result in a much wider 

distribution among and within cover types.  

 Another area of concern is in the use of GIS data from a variety of sources and with a 

large range of data quality. The scale analysis indicated that aggregation has a variety of effects 

that are not systematic. For this study area, aggregating to a coarser resolution resulted in lower 

mean estimates, uncertain effects on variability, and decreased spatial autocorrelation. However, 

these effects appeared to be tied to the cover type distribution, for which the most prevalent cover 

type (Aspen-Birch) was also the most productive. Other studies have shown conflicting effects. 

For example, Turner et al. (2003) found a similar pattern to ours for coniferous landscapes in the 

Pacific Northwest. They concluded that capturing heterogeneity by increasing spatial resolution 

resulted in increased estimates of Net Ecosystem Production (NEP) compared with coarser 

resolution modeling. Conversely, McNulty et al. (2000) concluded that a spatially-explicit version 

of PnET run for southern forests was insensitive to aggregation of input variables, but concluded 

that aggregations can bias estimates. For this research, it was acceptable to have such uncertainty 

because the focus was on the methods and not the predictions. For applied research and 

operational use, emphasis should be placed on evaluating data quality, and sensitivity analysis 

should be conducted on all input layers in addition to the parameter values. If possible, a multi-

scale analysis is suggested in order to help identify potential sources of error or bias.  

 With these concerns in mind, there were also encouraging trends across all model runs. 

First, it was reassuring that the overall predictions from the two models were at least comparable, 

although this may be a function of parameterizing one of the models (3-PG) against the other 

(PnET-II). The fact that the models were within the range of estimates from previous studies 

gives support to the argument that the models are comparable. Similarly, scale analysis and 

spatial autocorrelation analysis were similar between the two models. Thus, if properly 

parameterized, multiple EPMs can be used in a similar fashion. It is common practice in many 
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studies to compare predictions from more than one model. If feasible, a multiple-model approach 

is also suggested. 

 In terms of model implementation, both models were run within the Perl-based 

“wrapping” approach. This suggests that, even with varying underlying theory and software 

packages, it is possible and relatively straightforward to overcome such differences with current 

technologies. One downside to this approach, however, is increased computational costs. In this 

project, the biggest computation bottleneck resulted from having to format input ASCII files, feed 

them into the models, and then reformat output ASCII files. This separation of code and reliance 

on ASCII text files clearly slowed processing down. For example, a batch run for each of the 

25885 cells in the 1x1 km analysis took over 12 hours on a 1.0 GHz Pentium III processor. 

Obviously, this time will be reduced with faster desktop computers. However, processing times 

could be drastically reduced with current computers if the code were more fully integrated. In this 

research, though, the flexibility and simplicity of using the Perl “wrapper” approach was well 

worth the computational cost. 
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3 A general framework for implementing regional-scale ecosystem models 

3.1 Introduction 

 The use of computer-based forest simulation models has increased dramatically over the 

past two decades. Scientists and forest managers use these tools to address practical and 

hypothetical scenarios across all spatial scales, from predicting growth of individual trees to 

calculating worldwide carbon budgets under global warming conditions. A large amount of 

research has focused on regional-scale forest modeling (e.g., watershed or ecoregion scale). 

Studies at such coarse scales rely heavily on GIS and remote sensing technologies. The increase 

in technology, complexity, and scope of these modeling studies has necessitated the development 

of methods for implementing and using the models, and standards for administering the large 

amounts of data required to run the models. 

 A major criticism of coarse-scale modeling studies is that few people understand the 

needs, processes or results of the studies. The technical implementation is often to blame for this 

criticism. Model development and data administration practices are often selected on an ad hoc 

basis with little or no concern for repeatability or longevity. This chapter directly addresses the 

issue of defining a modeling framework. The objectives of this chapter are to: 

 1) develop a generalized conceptual framework for regional-scale Ecosystem Process 

Models (EPMs), 

 2) evaluate various technical modeling approaches for EPMs, and 

 3) identify future trends in the use of EPMs. 

 
 The overarching goal of this project is to evaluate the process of implementing regional-

scale EPMs and identify future trends and opportunities. Chapter 1 provided background 

information. Chapter 2 consisted of a sample implementation of two popular EPMs for the 

Arrowhead region of Northeastern Minnesota. This chapter uses the knowledge gained in 

Chapters 1 and 2 to critically evaluate the modeling process. 
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3.2 Conceptual Framework 

 Forest growth models have often been implemented for independent, single-use studies. 

Although data and the core model are regularly reused, the modeling process flow, technological 

setup and analyses are often recreated for each separate modeling study. There are, however, 

several identifiable model implementation components that are common across studies. For 

example, studies typically contain data preparation, parameter calibration, sensitivity analysis and 

reporting phases.  

 For this framework, we identify four general components of model implementation. First, 

there is the model itself, which is considered here to be a “black box” model for which the inputs 

and outputs are the primary concern, not the internal model algorithms. Second, model 

implementations require data sources and data stores for both inputs and outputs. Third, 

technological processing is required in order to manage data and convert between formats. 

Finally, there are ecological model considerations, which include the scientifically based methods 

and decisions generally included with model studies. Figure 1 contains a conceptual flowchart for 

a traditional “model-centered” modeling framework based on these four components.  

 

Figure 1: Conceptual framework of an EPM implementation interfaced with a GIS. 
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 While EPMs may be encapsulated in a single program, this framework is based on the 

argument that a modeling study is much broader than the model itself. Key decisions need to be 

made long before the model is ever run, and the output of the first model will likely never be 

accepted as the definitive answer. The remainder of this chapter explores important technological, 

data administration, and model assessment topics relating to the broader scope of EPM studies as 

defined in the conceptual model presented in figure 1.  

 

3.3 Technologies 

 Computer-based technologies provide both endless opportunities and large challenges for 

estimating forest production. A limiting factor frequently identified as a weakness of current EPM 

implementations is the information system organization. While one lab or user may have 

developed a modeling environment that works well for them, that environment is often not easily 

transferred to other groups or scaled up for use in a larger organizational context. As a starting 

point in improving the information system organization of EPMs, this section explorers the 

various technological components of the EPM conceptual framework. 

 

3.3.1 GIS 

 A fundamental decision in spatially explicit, process-based modeling is the relationship 

between the model and the GIS. The conceptual flowchart presented in Figure 1 above illustrates 

a traditional “model-centered” framework. This approach requires the user to incorporate the 

various components, understand and properly address the ecological model considerations, and 

properly validate and report the results, and is arguably the most common approach in scientific 

modeling studies. Mitasova and Mitas (2002) identify this approach as an “import/export” (or 

“loose coupling”) interface between the model and GIS (Figure 2). Two alternatives include an 
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“embedded coupling,” or full integration of the model within the GIS, and a “tight coupling,” 

which provide of a common interface between the GIS and model.  

 

 

Figure 2. Visualizations of three categories of integration between models and GIS. 

 

 Overall, there is a trade-off between end-user friendliness of the more fully integrated 

alternatives and development flexibility of the less integrated alternatives. With recent advances 

in GIS software capabilities, such as the Microsoft COM-compliant structure in both ESRI’s 

ArcGIS software suite and IDRISI’s Kilimanjaro package, it is becoming easier to integrate 

models within a GIS. Conversely, popular scripting languages such as Perl and Python can be 

used as relatively simple and flexible “wrapper” programs in which to link the various model 

components in a less rigid arrangement. Thus, the technological tools are available to meet a 

variety of GIS-related modeling approaches. 

 

3.3.2 Remote sensing 

 Remote sensing technologies are almost always a direct or indirect component in EPM 

studies when applied across broad areas. Plummer (2000) identified four strategies for using 

remote sensing and remotely sensed data in EPM studies. First, remotely sensed data can be used 

to estimate variables required in EPMs (i.e., model inputs), such as LAI or forest type. Second, 

remote sensing can be used to test or validate predictions of EPMs. For example, EPM 
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predictions can be compared against simple, reflection-based models of NPP. Third, remote 

sensing can be used to update or calibrate EPM predictions. For example, a regression between 

sparse field-based and extensive remotely sensed estimates of LAI can be used to calibrate final 

LAI estimates used in a model study. Finally, EPMs can be used to aid the interpretation of 

remotely sensed data. For example, this inverted approach can be used to evaluate empirical 

NDVI based estimates of LAI using more detailed and mechanistic understanding incorporated 

into EPMs. 

 The use of remote sensing in EPM studies will likely continue to increase. Turner et al. 

(2004) argue that remote sensing and process-based models are complementary technologies that, 

when combined, can provide an effective means to evaluate C cycles across large areas. With the 

large variety of new satellite and airplane sensor systems currently in use or in development, this 

area of research appears to be growing in the foreseeable future. 

 

3.3.3 Climate models 

 Climate variables such as temperature and precipitation are invariably key inputs in 

EPMs. Typically, such variables are collected from climate stations in the region and spatially 

interpolated for areas where stations are not located. A variety of interpolation methods may be 

used. Ollinger et al. (1995) use a statistical approach dependent on latitude and longitude. Bolstad 

et al. (1998) concluded that regional regression interpolation provided better predictions for 

temperature than local lapse rates and kriging-based interpolations in mountainous areas. As part 

of the sample implementation used in this research project, a standard Inverse Distance-Weighted 

interpolation method was used (see Chapter 2, section 2.5.5). Spatial interpolation is a broad and 

important spatial problem with no clear best methods for all circumstances. 

 In terms of implementation, climate models are most often used to estimate the requisite 

variables prior to the actual model runs. For sensitivity analyses, two approaches are possible. 

First, the climate model can be directly incorporated into the sensitivity analysis sequence, 
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effectively nesting the climate model within the ecological model. Second, a separate routine can 

be used to vary the values. For example, a script can be written to alter temperature by 5% above 

and below the value generated by the climate model. Climate variables often are the key drivers 

for light-use efficiency style EPMs. As such, climate data should be used carefully in modeling 

studies regardless of the interpolation technique or usage within the modeling framework.  

 

3.4 Data administration 

 Process-based forest growth models require a large variety of data inputs. Before running 

a modeling study a significant amount of pre-processing is required to convert the data into a 

form suitable for the study. Running the model with inaccurate or incomplete data can have 

undesirable consequences on the outcome. Additional data challenges arise in a multi-user 

situation. Controlling access and updates becomes a requirement. Identifying user needs and 

abilities and providing appropriate interfaces is important. Improved data administration is one of 

the fundamental requirements for extending EPMs from the research lab to the production 

environment. The topics of data modeling, collection and aggregation are evaluated in this 

section. 

 

3.4.1 Data modeling and entity relationships 

 Understanding the relationships and organization of data is a key first step in effective 

data administration. Having a stable and efficient data schema may help minimize potential biases 

and inaccuracies in an EPM study. A generalized logical data schema for regional-scale forest 

growth modeling studies is described in this section. 

 For forest systems, Denkers (1992) suggests modeling data based on subject entities and 

associations rather than application-driven structures, an approach commonly applied in forest 

growth modeling. A logical data scheme should be developed by rigorously defining and 

 52



verifying entities, determining the relationships between entities, and formally creating a physical 

data scheme. As a result, the final database model will be more stable and flexible. 

 For fine-scale forest growth modeling (e.g., individual trees in a forest stand), Robinson 

(1998) proposed the use of an object-oriented data model, with Trees, Climate, and Soil being the 

primary objects. This approach does not apply as easily to coarse-scale forest growth modeling. 

First, the definitions of objects become less clear as scale is generalized. Second, coarse-scale 

modeling studies traditionally rely on GIS data structures, which in most cases involve relational 

data structures. Thus, a different logical model is often necessary. 

 Landsberg and Gower (1997) define four general categories of input requirements for 

EPMs: site conditions, vegetation/stand conditions, weather conditions, and vegetation 

parameters.  These categories provide a starting point for defining entities in coarse-scale 

ecosystem modeling. Site conditions consist of data describing the area where the stand exists. 

Examples of applicable attributes are slope, aspect, soil texture, and latitude. Stand condition data 

define the condition of the forest stand itself, such as age, standing biomass, tree density, and 

LAI. Weather conditions data contain all pertinent climatic attributes, such as precipitation, 

incoming solar radiation, and temperature. Lastly, vegetation type parameters are defined as 

values specific to each vegetation cover type that describe how that cover type responds to 

environmental stimuli. For example, one common parameter is maximum photosynthetic rate, 

which is a value that differs among tree species and forest types. 

 These four general input data classes do not, however, cover all data entities necessary 

for forest growth modeling studies. Additional data are required for the processing unit for which 

the model is run (i.e., the spatial extent or area used). This is typically an individual forest stand 

or, more commonly, a raster grid cell within a GIS. An example of a potential Entity Relationship 

Diagram based on these classes is in Figure 3. In general, mapping data relationships in such a 

manner allows for improved understanding of input requirements, a structure for systematically 
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updating and maintaining the database, and a framework for organizing the overall modeling 

study. 

 

Figure 3: Sample Entity Relationship diagram for organizing data used with an EPM. 

 

3.4.2 Parameter collection and estimation 

 Most process-based models are highly dependent on the parameter value set used in the 

study. Parameter values are obtained in a variety of ways. In some larger modeling studies, field-

based experimental or observational studies are commissioned to determine particular parameter 

values. For parameters that are common across the scientific discipline, estimated values can be 

obtained from searches of the scientific literature or based on expert opinion. In other cases, 

parameter values are estimated using a calibration process applied to a sample data set such as a 

pilot study. A variety of statistical and software tools have been developed to aid the process. For 

example, Radtke (2002) used a Bayesian synthesis approach for identifying distributions for 

parameter values from which the models can be run. Commercial software is also available. For 

example, PEST (S.S. Papadopulos and Associates, Inc. 2004) is a model-independent parameter 

 54



estimation and uncertainty analysis package used across many scientific and engineering 

disciplines. Overall, a wide assortment of resources are available to aid in the parameter 

estimation process. 

 

3.4.3 Data scaling and aggregation 

For any forest modeling study, a unit of interest must be defined for which the model is 

run. In regional-scale modeling, this unit is most often a raster grid cell. Much effort has been 

spent in Geographic Information Science and related fields in evaluating the effects of using 

different cell sizes on process outputs. For example, Kang et al. (2004) modeled C and water 

cycles across 8 different spatial resolutions and found that model outputs varied nonlinearly with 

spatial aggregation of inputs, with biases of up to 50% for one key variable (solar radiation). The 

sample implementation in this research project also found non-linear and non-uniform patterns 

resulting from aggregation (see Chapter 2 section 2.5.3). 

Clearly, defining the spatial resolution(s) used in analysis is a very important decision. In 

general, there is a trade-off between computation time and capturing heterogeneity in the system 

being modeled. There is also a trade-off between the generalization errors inherent in aggregating 

data and potential classification errors in using fine-grained data. In order to specifically address 

this problem, many studies now run models across a variety of resolutions to quantify errors 

associated with aggregation. Regardless, the resolution of analysis should be careful considered in 

implementing modeling studies and interpretation of results. 

 

3.5 Model assessment 

 Model evaluation consists of the methods and tools used to assess whether or not a model 

is properly performing the tasks for which it was designed. With the huge amount of data that 

EPMs typically provide as output, it is important to critically and quantitatively evaluate those 
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data. Radtke (2001) argues that there is a discrepancy between the sophistication of methods used 

in process-based model development and the tools for the evaluation of those models, especially 

when compared against the broad evaluation methodologies for traditional statistical models. 

Inferences derived from modeling studies can be interpreted more confidently with the use of 

more powerful and robust evaluation methodologies. Two general categories of model assessment 

are discussed here: sensitivity analysis and calibration. Methods for evaluating and estimating 

parameter values were mentioned in section 3.4.2 above. 

 

3.5.1 Sensitivity Analysis 

 Sensitivity analyses can be classified into of two broad categories. In the first, varying 

scenarios are predefined, with the model runs for each scenario. This is the often the case with 

“what-if” analyses, for example, what if atmospheric CO2 concentrations doubled? In the second 

approach, a large number of repetitions are conducted with random or systematic variations 

applied to the desired input or parameter variables. In this case, the objective is either to evaluate 

the relative importance of various model inputs in determining model outputs, or else to 

statistically explore the relationships within and among model inputs, parameters, or processes 

being modeled. The simplest, and arguably most common, approach is Monte Carlo sensitivity 

analysis, in which one or more input variables are randomly altered with each repetition. More 

advanced methods include Latin Hypercube Sampling (McKay et al. 1979; see Chapter 2 section 

2.4.3 for a further description), Fourier Amplitude Sensitivity tests (Radtke 1999), and fractional 

factorial analysis (Henderson-Sellers and Henderson-Sellers 1996; White et al. 2000). Each of 

these methods propounds statistical or computational improvements over basic Monte Carlo 

analysis. 
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3.5.2 Calibration, Validation, and Uncertainty Assessment 

 In any study that predicts forest growth, regardless of the modeling approach, a key 

requirement is determining how well the predictions mimic the true forest growth in the field. 

With traditional statistical approach, a model is fit (i.e., calibrated) against a sample data set. 

Uncertainty estimates are provided via standard error statistics or confidence intervals. The model 

can then be validated against a separate sample data set. Due to the increased complexity, these 

tasks can be much more challenging for EPMs, but are just as important.  

 In practice, EPMs are often validated in a variety of ways. First, predictions can be 

compared against separate data sets not used in model development or calibration. Second, 

predictions can be compared to other studies in the same area of interest. Third, predictions can 

be compared against other modeling approaches, such as remote sensing studies. 

 If field-based studies or similar data are available, the models may be calibrated against 

those data. With broad-area studies, however, thorough calibration against field-based studies 

may be logistically or financially impractical. In this case, the distinctions between calibration 

and validation are blurred. Approaches traditionally considered being validation techniques are 

used to calibrate the model during initial pilot model runs. Similarly, uncertainty assessment of 

model predictions is restricted by small or nonexistent sample data sets, resulting in the need for 

surrogate approaches such as using sensitivity analyses to identify plausible confidence limits. 

See Radtke (2001) for a fully developed discussion of these topics. 

 

3.6 Conclusion and Future Trends 

 This project used one particular modeling implementation in northeastern Minnesota as 

the basis for identifying a framework for implementing regional-scale forest production models. 

Using the PnET-II and 3-PG models with publicly available data sets, forest production estimates 

were found to be comparable to estimates from other studies in the region in terms of production 
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estimates and spatial patterns. The four general components of the modeling framework include 

the model, technological processing steps, data sources and stores, and ecological modeling 

considerations. Overall this study supports the general consensus of experts as found in a review 

of the literature that there are large potential benefits for expanding EPMs into operational forest 

management environments. 

 Turner et al. (2004) identify future trends in regional-scale use of EPMs. Particularly, 

advances in remote sensing technologies have expanded the set of pertinent data that can be used 

with EPMs. In addition to vegetation type and LAI, new approaches are being developed to 

estimate standing biomass, forest age structure, canopy height, and canopy chemistry properties, 

such as foliar leaf Nitrogen. Conversely, EPMs are being developed or modified to take 

advantage of these new information sources. Lucas and Curran (1999) argue that remote sensing 

can provide the basis for multi-scale simulation of forest ecosystem processes. In addition to 

providing a source for mapping forest cover type, remote sensing can be used to estimate forest 

composition, biophysical, physiological, and biochemical properties.   

  Landsberg (2003) lists several current challenges and research trends in the use of 

process-based models in operational environments. Some of the key challenges in current models 

are a lack of scientific understanding in the processes of C allocation within trees, nutrient 

availability and cycling in the soil, and uptake of nutrients by the trees. Landsberg also cites 

advances in the linkage between remote sensing and EPMs as a current research trend. 

 A third set of current trends consists of expanded and novel modeling strategies. For 

example, Liu et al. (2002) developed a component object model for “reusing” existing ecosystem 

models as modules in a larger model. More generally, Landsberg (2003) notes that models also 

benefit from expanded use of the World-Wide Web. Communication is increased, updates can be 

distributed more quickly, and data and parameter sets can be shared.  

 Besides these technological challenges and trends, it is apparent that specialized training 

is required to properly implement process-based models in a production environment. This 
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includes general understanding of the ecological processes being modeled, specific knowledge of 

the computer-technologies being used, and scientific comprehension of the statistical, analytical, 

and scaling issues surrounding process-based models. Over the past several years university-level 

courses, public short courses, and publications have been developed to explore the alternatives 

and consequences of these modeling considerations. With improved model implementations and 

proper training, which is becoming increasingly available, a myriad of new management 

modeling analyses are possible. 

 To date, there is only one documented example of the 3-PG model being used in an 

operational environment (Almeida et al., 2002), and no known operational uses of PnET-II have 

been identified. Indeed, process-based models have yet to find a widespread niche in traditional 

forest management. In his review article, Landsberg (2003) identifies the primary challenge and 

opportunity for the practical use of EPMs is the need for communication between model 

developers and forest managers. Addressing the information system and GIS components within 

a modeling framework may provide a common ground for expanding this communication. 
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Appendix A: Sample Maps 
 
This appendix contains sample maps of the primary input data sets used in the sample 
implementation discussed in Chapter 2. 
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Appendix B: Technological implementation of models 
 
This appendix provides a description and sample code of the approach used in this study 
for implementing regional scale models using GIS data. The approach consists of using 
the Perl scripting language as a “wrapper” around the model being used. This approach 
provides a link between the GIS data set and the model, and allows for batch processing 
of the executable files of the two models used. Figure 1 illustrates the general flow of 
how the models were used and linked.  
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!\c:\perl\bin -w 

This script controls a batch run of the PnET-II model. 
As inputs, it requires three types of files: 
  1) Input variable csv table, often exported from an ArcView 
     shapefile .dbf file. 
  2) A two-column csv file, with each record containing 
     (a) a variable name as listed in the input variable file 
     (b) the corresponding variable name used in PnET 
     (this allows for different naming schemes). 
  3) PnET-II Parameter files for each vegetation type 
 

Technologies

Compile
Database

Convert to
Input Files

Run
Models

Convert
Output Files

Report
Results

- ArcView/
ArcInfo

- Perl- Perl - Perl

3-PG 
Parameter Files

GIS data    
(shapefiles)

PnET-II
Parameter Files

CSV file
of inputs

3-PG C++
batch interface

PnET-II C++
batch interface

3-PG output
Files

PnET output
Files

Predictions  
Files

-Perl
-C/C++

-Perl
-ArcView
-Surfer

Technologies

Compile
Database

Convert to
Input Files

Run
Models

Convert
Output Files

Report
Results

- ArcView/
ArcInfo

- Perl- Perl - Perl

3-PG 
Parameter Files

GIS data    
(shapefiles)

PnET-II
Parameter Files

CSV file
of inputs

3-PG C++
batch interface

PnET-II C++
batch interface

3-PG output
Files

PnET output
Files

Predictions  
Files

-Perl
-C/C++

-Perl
-ArcView
-Surfer

Compile
Database

Convert to
Input Files

Run
Models

Convert
Output Files

Report
Results

- ArcView/
ArcInfo

- Perl- Perl - Perl

3-PG 
Parameter Files

GIS data    
(shapefiles)

PnET-II
Parameter Files

CSV file
of inputs

3-PG C++
batch interface

PnET-II C++
batch interface

3-PG output
Files

PnET output
Files

Predictions  
Files

3-PG 
Parameter Files

GIS data    
(shapefiles)

PnET-II
Parameter Files

CSV file
of inputs
CSV file
of inputs

3-PG C++
batch interface

PnET-II C++
batch interface

3-PG output
Files

PnET output
Files

Predictions  
Files

-Perl
-C/C++

-Perl
-ArcView
-Surfer

igure 1: Process and Technological flow of model implementation. 

ll input requirements were organized as attributes in a point feature Shapefile, with each 
oint representing the center of the grid cell for which the models are run. Once 
ompleted, the attribute table was exported to a Comma Separated Value (CSV) file. A 
erl script was written to read each line of the CSV file, convert the data into the format 
sed by the model, and run the model for that cell. Separate Perl scripts were used to sort, 
ummarize, and analyze the output files. 

he primary Perl script used for running the PnET-II model is included here as reference. 
he code for 3-PG is different, but follows the same organization, so is not included here. 
he Perl scripts also contain the code for the optional Latin Hypercube Sampling 
ensitivity analysis. (comments begin with a pound sign, #). 

!\c:\perl\bin -w 

This script controls a batch run of the PnET-II model. 
As inputs, it requires three types of files: 
  1) Input variable csv table, often exported from an ArcView 
     shapefile .dbf file. 
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#  2) A two-column csv file, with each record containing 
#     (a) a variable name as listed in the input variable file 
#     (b) the corresponding variable name used in PnET 
#     (this allows for different naming schemes). 
#  3) PnET-II Parameter files for each vegetation type 
# 
#To run, use <name>.pl <input var file>, 
#where <name> is the name of this perl script and 
#<input var file> is the file name of file 1) described above 
 
use Benchmark; 
 
$time1 = new Benchmark; 
 
$sitFileLoc = "d:/sims"; 
$outDir = "output-pnet"; 
$pnetVarList = "pnetvarlist.txt"; 
 
#hash of cover types used in this batch run, with the first item 
#being the numeric code, and the second being the name. The names 
#have to be the same as used in the parameter files. 
%goodCovType = (1 => "Pine", 2 => "S-F", 3 => "A-B", 4 => "M-B"); 
 
#dates to run the model. 
$startYear = 1977; 
$endYear = 2027; 
 
#month mid points, in julian days, used by PnET 
@midMonth = (15,46,76,107,137,168,198,229,259,290,321,351); 
 
#if running sensitivity analysis, fill these values in. 
#Currently, only 4 variables are set up for sensitivity 
#analysis, folN, SWHC, temp, and precip. folN and SWHC 
#are based on the range of observed limits.  Temp and Precip 
#are based on a percentage variation of long term known 
#averages. All sensisitivity analysis code will have to 
#be changed for varying additional parameters. 
# 
#The sensitivity analysis uses latin hypercube sampling, 
#where all variables are varied together from the given 
#distributions. 
$numN = 100;     #number of runs for each processing unit 
                 #set numN to 0 if not doing sensitivity 
                 #analysis 
$folNmin = 1.7;  #min value for foliarN 
$folNmax = 2.7;  #max value for foliarN 
$SWHCmin = 1.5;  #min value for Soil Water Holding Capacity 
$SWHCmax = 29;   #max value for SWHC 
$tempmin = -5; #lower range of % variation of temperature 
$tempmax = 5;  #upper range of % variation of temperature 
$precmin = -5; #lower range of % variation of precipitation 
$precmax = 5;  #upper range of % variation of precipitation 
 
#Set up sensitivity analysis if applicable: 
if ($numN > 0) { 
 
 #find the interval width to use in sampling. 
 $wfolN = ($folNmax - $folNmin) / $numN; 
 $wSWHC = ($SWHCmax - $SWHCmin) / $numN; 
 $wTemp = ($tempmax - $tempmin) / $numN; 
 $wPrec = ($precmax - $precmin) / $numN; 
 
 #find random numbers of each value within its given 
 #range for each run and put them in arrays. Also, 
 #make sure there are no duplicate combinations of 
 #randoms numbers for any given run. 
 push(@r1,int(rand $numN)); 
 push(@r2,int(rand $numN)); 
 push(@r3,int(rand $numN)); 
 push(@r4,int(rand $numN)); 
 for ($b = 2; $b <= $numN; $b++) { 
   do { 
     $rand1 = int(rand $numN); 
     $rand2 = int(rand $numN); 
     $rand3 = int(rand $numN); 
     $rand4 = int(rand $numN); 
     $duplicate = 0; 
     for($c = 0; $c <= $#r1; $c++) { 
       if ($rand1==$r1[$c] && $rand2==$r2[$c] && $rand3==$r3[$c] && $rand4==$r4[$c]) { 
         $duplicate = 1; 
         $c = $#r1; 
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       } 
     } 
   } until ($duplicate == 0); 
   push(@r1, $rand1); 
   push(@r2, $rand2); 
   push(@r3, $rand3); 
   push(@r4, $rand4); 
 } 
 
 #Assign actual values to use model runs for each variable and 
 #place them in an array of length NumN. 
 for ($d = 0; $d < $numN; $d++) { 
   $r1val = $folNmin + ($r1[$d] * $wfolN) + (int(rand) * $wfolN); 
   $r2val = $SWHCmin + ($r2[$d] * $wSWHC) + (int(rand) * $wSWHC); 
   $r3val = $tempmin + ($r3[$d] * $wTemp) + (int(rand) * $wTemp); 
   $r4val = $precmin + ($r4[$d] * $wPrec) + (int(rand) * $wPrec); 
   push(@folNvector,$r1val); 
   push(@SWHCvector,$r2val); 
   push(@tempvector,$r3val); 
   push(@precvector,$r4val); 
 } 
} # end sensitivity analysis setup 
 
 
############################################# 
### Part 1: Map input fields to PnET vars ### 
############################################# 
 
# 
### Read header line of input file to get array of field names 
# 
$line = <>; #this reads from the input file 1) described above 
chomp $line; 
@head = split(",",$line); 
 
# 
### load PnET variable list, file 2) as described above 
# 
open(pnetVarList, "< $pnetVarList") or die "no open $pnetVarList"; 
while ($varRec = <pnetVarList>) { 
 chomp $varRec; 
 @inputRec = split(",", $varRec); 
 push(@pnetVars, $inputRec[0]); 
} 
 
# 
### For each PnET variable, find the column location 
### in the input file where that variable is located 
# 
for($i=0;$i<=$#pnetVars;$i++) { 
  for($j=0;$j<=$#head;$j++) { 
    if ($pnetVars[$i] eq $head[$j]) { 
      $pnetLoc[$i] = $j; 
      last; #this stops the $j loop after each match 
    } 
  } 
} 
 
############################################################# 
### Part 2:  Create input files for each record; run PnET ### 
############################################################# 
 
while (<>) { 
# 
### read record in 
# 
 
chomp; 
@record = split(",",$_); 
 
########## 
### create Pnet climate (clm) and site (sit) file. 
########## 
 
# 
### first, put required data values into an array using 
### the mapped location array 
# 
 
for ($k=0;$k<=$#pnetVars;$k++) { 
#  print "k = $k, pnetloc = $pnetLoc[$k], rec = $record[$pnetLoc[$k]] \n"; 
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  $fields[$k] = $record[$pnetLoc[$k]]; 
} 
 
#if doing sensivity analysis, create and open summary file 
if($numN > 0) { 
  $finalFile = $fields[1] . "-" . $fields[0] . "-sens.csv"; 
  open(finalCellList, "> $outDir/$finalFile") or die "can't open finalFile $finalFile"; 
  print finalCellList "folN,SWHC,temp-perc,rain-perc,NEP,NPPFolYr,NPPWoodYr,NPPRootYr 
\n"; 
} 
 
#start loop if doing sensitivity analysis, otherwise will 
#just run once. 
 
for ($a=0;$a<$numN;$a++) { 
 
  if ($numN > 0){ 
    #assign for sensitivity analysis 
    $folN = $folNvector[$a]; 
    $SWHC = $SWHCvector[$a]; 
    $tempm = $tempvector[$a]; 
    $rainm = $precvector[$a]; 
#print "$a, $folN,$SWHC,$tempm,$rainm\n"; 
  } else { 
    #assign default values 
    $folN = 2.0; 
    $SWHC = 12.0; 
    $tempm = 0; 
    $rainm = 0; 
  } 
 
  ### Create PnET Site File ### 
  #$fields[1] is the cover type code 
  #$fields[0] is the unique ID 
  #$fields[2] is the latitude 
  $sitFile = $fields[1] . "-" . $fields[0] . ".sit"; 
  open(writeFile, "> $sitFile") or die "no open sit $sitFile"; 
  print writeFile "File Directory **********" . "\n"; 
  print writeFile $sitFileLoc . "\n"; 
  print writeFile "SiteVariables ***********" . "\n"; 
  print writeFile "LAT     WHC     Climate file \n"; 
  print writeFile $fields[2] . "   " . $SWHC . "   " . $fields[1] . "-" . $fields[0] . 
"\n"; 
  print writeFile "Initial Conditions ******" . "\n"; 
  print writeFile "BudC  WoodC  PlantC  NRatio  PlantN  FolMass  WoodMass  RootMass \n"; 
  print writeFile "0     300     900    " . $folN . "    1      0     47000     6 \n"; 
  print writeFile "SnowPack Dwater Water   HumusM   HumusN  NH4   DeadWood \n"; 
  print writeFile "  0        1     0       13500    390     .01    11300  \n"; 
  print writeFile "Scenario - for CN *******" . "\n"; 
  print writeFile "Run Model  From/To \n"; 
  print writeFile " $startYear    $endYear \n"; 
  print writeFile "Run Climate File From/To \n"; 
  print writeFile " $startYear   $endYear \n"; 
  print writeFile "DelTMax DelTmin DelPrec  DelPar  DelWUE   Ramp?   Start   End \n"; 
  print writeFile "    0       0       1       1       1       0       0       0 \n"; 
  print writeFile " WetNO3  WetNH4  DryNO3  DryNH4   Ramp?   Start     End    Bkgd \n"; 
  print writeFile " .28999     .13  .20399     .05       1    1940    2000     .25 \n"; 
  print writeFile "FertNO3  FertNH4 YrStart  YrEnd  MonStart MonEnd \n"; 
  print writeFile "      0       0       0       0       0       0  \n"; 
  print writeFile "FolRegen \n"; 
  print writeFile "    100 \n"; 
  close (writeFile); 
 
  ### create PnET Climate File ### 
  $clmFile = $fields[1] . "-" . $fields[0] . ".clm"; 
  open(writeFile, "> $clmFile") or die "no open clm $clmFile"; 
  $numYears = $endYear - $startYear; 
  $numMonths = $numYears * 12; 
  print writeFile "$numMonths \n"; 
  print writeFile "Year  DOY  Tmax    Tmin     PAR   Prec    NH4      NO3     O3 CO2 V1 
V2 V3 V4\n"; 
 
  #loop through tmax, tmin, PAR, and precip for each month of each year for climate. 
  #using long term averages, so will be repetitive. $tempm is for sensitivity analysis. 
  $clmSt = 5; #this is the starting point of the climate files -- may need to be changed; 
  for ($y = 1; $y <= $numYears; $y++) { 
    $x = $clmSt - 1; 
    for ($z = 1; $z <= 12; $z++) { 
      $tTMin = sprintf( "%.3f",$fields[$x] + $tempm); 
      $tTMax = sprintf("%.3f", $fields[$x+12] + $tempm); 
      $tRain = sprintf("%.3f", $fields[$x+36] + $rainm); 
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      print writeFile "$y    " . $midMonth[$z-1] . "  " . $tTMin . "  " .  $tTMax . "  " 
. $fields[$x+24] . "  " . $tRain . " 0.00   0.00   0.00   0.00 \n"; 
      $x++; 
    } 
  } 
  close (writeFile); 
 
  # 
  ### Run PnET model for cell ### 
  # 
  $vegFile = $goodCovType{$fields[1]} . ".veg"; 
  $outputFile = $fields[1] . "-" . $fields[0] . "-" . $numYears . ".txt"; 
  system "d:/sims/pnet_main $sitFile $vegFile $clmFile d:/sims/ > ./$outDir/$outputFile"; 
  unlink("$sitFile"); 
  unlink("$clmFile"); 
  # 
  ### add to single list for sensitivity analysis 
  # 
  if ($numN > 0) { 
    open(addFile, "< output-pnet/$outputFile") or die "can't open output file 
$outputFile"; 
    do { $addLine = <addFile> } until $. == $numYears || eof; 
    chomp $addLine; 
    @ad = split(/\s+/,$addLine); 
    print finalCellList $folN . "," . $SWHC . "," . $tempm . "," . $rainm . "," . $ad[2] 
. "," . $ad[3] . "," . $ad[4] . "," . $ad[5] . "\n"; 
    close (addFile); 
    unlink("$outDir/$outputFile"); 
  } 
 
  $totalCells++; 
  if ($totalCells/100 == int($totalCells/100)) { 
    print "$totalCells "; 
  } 
 
} #end a loop for sensitivity analysis 
 
#close sensitivity analysis file 
if ($numN > 0) { 
  close(finalCellList); 
} 
 
} # end main while <> loop 
 
 
##################### 
### Print Results ### 
##################### 
 
$time2 = new Benchmark; 
$td = timediff($time2, $time1); 
print "time: " . timestr($td) . "\n"; 
print "$totalCells processing cells generated for PnET-II. \n"; 
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Appendix C: Conference Proceedings Paper 

This appendix contains a reproduced copy of the paper submitted and presented to the 4th 
Southern Forestry and Natural Resources GIS Conference. The full citation is: 

Kirk, Ryan W., and Thomas E. Burk. 2004. Regional-Scale forest production modeling using 
process-based models and GIS. In: SoFor GIS 2004: Proceedings of the 4th Southern Forest 
and Natural Resources Geographic Information Systems Conference. Athens, GA, December 
2004. 

 
REGIONAL-SCALE FOREST PRODUCTION MODELING USING PROCESS-

BASED MODELS AND GIS 
 

Ryan W. Kirk and Thomas E. Burk 
Department of Forest Resources, University of Minnesota,  

St. Paul, MN 55108 
 

ABSTRACT 
 

While research scientists have used process-based models of forest growth for several decades, 
forest managers have only recently begun to adopt them in production environments. This lag is 
accredited to the nature of process-based models, which are often difficult to parameterize, 
challenging to validate, and built around limited technical implementations. This study addresses 
these limitations by incorporating standard information system and GIS concepts into the 
modeling framework. As a sample implementation, the PnET-II and 3-PG models were run 
within a GIS for the Arrowhead region of northeastern Minnesota and compared against growth 
estimates from other studies in the region. Based on the experiences of this modeling study and a 
review of the literature, a framework for implementing process-based models within a GIS is 
presented. Primary components of the framework include ecological modeling considerations, 
data sources and stores, and technological processing requirements. Several GIS-based modeling 
strategies are evaluated. In addition, current technological and programming trends, research 
priorities and implementation challenges are discussed. 
 
KEYWORDS. Process-based models, 3-PG, PnET, Minnesota, GIS Model 

 
INTRODUCTION 

 
Process-based models can be defined as formalized statements of hypotheses regarding a 
complex system and its responses to stimuli (Landsberg 1986). To scientists, such models are 
tools that provide a structure for organizing current knowledge of a particular system, a 
framework with which to test hypotheses about that system, and a means to evaluate responses to 
stimuli within the system (Landsberg and Gower 1997). Due to the complexity of calculations, 
process-based models are most often presented as stand-alone computer programs or nested 
within a spreadsheet or other software application. Thus, endless combinations of user interfaces, 
output, presentation, and analysis options are possible. 
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In recent years, forest managers have expressed interest in the application of process-based 
models in forest management decision making (Mäkelä et al. 2000, Korzukhin et al. 1996, 
Johnsen et al. 2001). In a summary paper, Battaglia and Sands (1998) identify five potential uses 
of process-based forest productivity models as management tools: (1) prediction of growth and 
yield, (2) selection of new plantation sites, (3) identification of site limitations on productivity, 
(4) assessment of risks associated with locations or management options, and (5) use of models 
as surrogates for field experiments. Mohren and Burkhart (1994) argue that process-based 
models provide greater potential for predicting forest growth under varying environmental 
conditions than empirical growth and yield models. From this perspective, the focus of modeling 
shifts away from scientific inquiry to strategic and operational considerations.  
 
In the summary report of an International Union of Forestry Research Organization working 
group on applications of process-based models (Mäkelä et al. 2000), the group affirmed the 
potential of process-based models as management tools across all spatial scales. A primary 
recommendation of the group was for improved practical implementations within operational 
management systems. In essence, a key factor to further use of process-based models as 
decision-making management tools is in information system design and analysis, not just 
continued scientific development. Similarly, Battaglia and Sands (1998) argue that current 
process-based models are overly complex for practical use and are in a state of constant 
development; this is in disagreement with the desire for robustness and consistency in forest 
planning methodology (Sievänen and Burk 1993). Johnsen et al. (2001) contend that process-
based models are quite valuable in simulating extremely complex forest systems, but will only be 
adopted when the complexities of research models are overcome. Korzukhin et al. (1996) 
conclude that with an increasing focus on ecosystem-based forest management, process-based 
models become a valuable tool for addressing a large variety of management decisions. Thus, 
with a diverse and clearly defined interest in process-based modeling for natural resource 
decision-making, additional efforts need to be made to join the needs of forest managers with the 
powerful models being developed by researchers.  
 
This study aimed to provide support for bridging the gap between scientific and operational 
implementations of process-based forest production models. The primary objectives were to: 

1. Implement a regional-scale modeling study using GIS and remote sensing technologies 
for northeastern Minnesota. 

2. Compare regional predictions of Net Primary Production (NPP) using two popular 
process-based models (PnET-II and 3-PG) at two spatial resolutions. 

3. Based on a literature search and the experiences and results of objectives 1 and 2, develop 
a generalized framework for the technical implementation of regional-scale process-
based forest production models. 

 
METHODS 

 
Study Area 
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The study area is a 5 county area in northeastern Minnesota commonly called the “Arrowhead” 
region (Figure 1). The region is geologically identified as the Superior Uplands portion of the 
Canadian Shield, and is characterized by exposed bedrock, extensive mineral deposits, varied 
topography, thin soils, and a large abundance of lakes.  The area is bordered on the east by Lake 
Superior and on the north by Canada. The climate is characterized by cold winters, cool summers 
and an average of 66 cm of precipitation per year. The region falls in a transition zone between 
temperate and boreal forests, containing predominantly aspen, birch, and white, red, and jack 
pine in the uplands, and spruce, fir and tamarack in the lowlands.  

Pine
Spruce-Fur
Aspen-Birch
Maple-Basswood
Non-Forest

0 50 100 Kilometers

N

 
Figure 1.  Study area in northeastern Minnesota.  

Models 
 
Process-based forest production models that are applicable at regional scales (i.e., on the order of 
102 to 105 km2) model the carbon (C) cycle by focusing on the processes of photosynthesis, 
respiration, and allocation of C within trees or a forest stand, and are alternatively called 
Ecosystem Process Models. The amount of photosynthesis and respiration is usually calculated 
with a “radiation-use efficiency” approach, in which total potential photosynthesis is determined 
and then reduced based on any number of environmental modifiers such as vapor pressure deficit 
and water availability in the soil. Such models typically view a forest as a single homogenous 
unit (i.e., “Big Leaf” model) instead of as a set of individual trees. 
 
The two models examined in this project, PnET-II and 3-PG, are generalized, Big-Leaf type, 
radiation-use efficiency models intended to be applied at stand to regional scales. They were 
selected because of the widespread interest in them, their focus on generalized relationships and 
parameterizations, and the relatively few data input requirements. PnET-II (Photosynthesis and 
Evapotranspiration) is a lumped-parameter model of C and water balances that combines 
process-based and empirical components. PnET-II runs on a monthly-time step and has no 
specific spatial dimension, although it is commonly applied at small watershed to regional scales. 
For a detailed description, see Aber and Federer (1992), Aber et al. (1993), Aber et al. (1995), 
and Ollinger et al. (1998). 3-PG (Physiological Processes Predicting Growth) is a newer 
ecosystem model receiving considerable attention in the forest modeling community. Developed 
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by Landsberg and Waring (1997), 3-PG was designed for use as both an operational and a 
research tool. As with PnET-II, 3-PG is a generalized, monthly time-step, radiation-use efficiency 
model of forest growth that includes both process-based and empirical components. A key 
difference with 3-PG is the inclusion of allometric relationships, where biomass outputs are 
converted into units important to forest managers (e.g., stand density and volume). For a detailed 
description, see Landsberg and Waring (1997), Coops et al. (1998), and Landsberg et al. (2002). 
Law et al. (2001) conducted a direct comparison of 3-PG and PnET-II, and concluded that the 
models were comparable and applicable for estimating annual production at the stand level. 
Data 
 
Both spatial and aspatial data were required for this project. All of the data, with the exception of 
model parameters, were collected from publicly available data sources and organized within a 
GIS. The required data can be grouped into four general categories: forest inventory data, climate 
variables, site variables, and model parameters. Baseline and validation forest type and inventory 
data were collected from the USFS FIA database for the years between the 4th and 5th Minnesota 
FIA surveys, 1977-1990 (Jakes 1980; Leatherberry et al. 1995). Long-term normal climate data, 
including monthly temperature, precipitation and solar radiation, were collected for climate 
stations in the region (Baker et al. 1985; Minnesota Climatology Working Group 2003; Maxwell 
et al. 1995). For temperature and precipitation, monthly raster grids were interpolated using an 
Inverse Distance-Weighted (IDW) algorithm with squared exponential weighting. For solar 
radiation, monthly raster grids were linearly interpreted along a latitudinal gradient from the two 
sample locations in the study area where data were publicly available (Duluth and International 
Falls, MN). The two required soil variables, soil water holding capacity (SWHC) and soil texture 
type, were extracted from the nation-wide STATSGO soil data set (SCS 1991).  
 
Process-based ecosystem models use parameter values to distinguish the characteristics and 
responses to stimuli of different vegetation types. In this project, four general forest types were 
selected and parameterized: Aspen-Birch (39% of the study area), Spruce-Fir (26%), Pine (5%), 
and Maple-Basswood (2%). The remainder of the study area (28%) consists of non-forest areas, 
including open water, wetlands, developed areas, and bare land. The models were not run for 
these non-forest areas. For PnET-II, parameter values existed from other studies in the region 
(Reich et al, 1999; Sellers et al., 1997). For 3-PG, individual parameter values were extracted 
from published studies where possible, or else the default values were used. 
 
Analysis 
 
Two primary lattice grids (in the form of point feature vector files) were created for the study 
area, one for each of the primary spatial scales of analysis (1x1 km and 10x10 km cells). Each 
model was run for each forest grid cell in the study area, resulting in 25,885 runs of each model 
for the 1x1 km scale and 299 runs each for the 10x10 km scale. Although both models provide a 
variety of outputs, only aboveground Net Primary Production (NPP, or the annual sum of foliage 
and stem biomass production) growth estimates are evaluated here. This limited analysis was 
chosen because forest managers are typically more interested in above ground growth 
(particularly stem growth) than below ground growth. Due to their widespread applicability, the 
two models are treated as “black boxes” and are assumed to accurately portray regional forest 
production processes. 
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Three primary sets of analyses were conducted. First, modeled outputs were compared between 
the two models and across the two spatial scales using non-parametric statistical tests. Second, 
spatial patterns between models and across scales were compared using the Moran’s I index of 
spatial autocorrelation. Moran’s I quantifies spatial autocorrelation by using a weighted 
correlation coefficient to test for departures from spatial randomness (Cliff and Ord 1981). The 
value for Moran’s I falls between -1 and 1, where 0 equals spatial randomness and negative or 
positive numbers indicate the level of negative or positive autocorrelation, respectively. For this 
project, Moran’s I was calculated using the S-Plus for ArcView 3.x extension (S-Plus, 1998). The 
final set of analyses consisted of comparing modeled outputs against other forest production 
estimates in the region and the FIA database growth estimates. Additional analyses were 
conducted, including variogram and Latin Hypercube Sampling sensitivity analysis, but are 
presented in full elsewhere (Kirk 2004). 
  
Framework 
 
The ultimate objective of this study was to identify the core components of implementing 
process-based models and develop a framework for incorporation of those components. The 
framework developed here is explained in detail in the discussion section below. 
 

RESULTS 
 
The mean NPP estimates for the four modeling sets (i.e., two models run across two spatial 
scales) range from 783.2 to 820.9 g C m-2 yr-1, with standard deviations between 218.7 and 255.0 
g C m-2 yr-1. Thus, in the most general sense, all model predictions fall in a comparable range. 
Figure 2 contains histograms of the NPP estimates. In aggregate, the data are multi-modal at both 
resolutions with no discernable patterns. This is explained by cover type differences, for which 
the models are parameterized. Separating by cover type results in unimodal distributions for all 
cover types except for the 10x10 km Aspen-Birch group, which is bimodal. Overall, none of the 
cover type predictions are normally distributed (chi-square test for normality, p < 0.001). As a 
result, non-parametric tests are used for comparisons presented below. 
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Figure 2. Log-scale histograms of the 1x1 km resolution model predictions for PnET-II and 3-PG. 

In general, the model predictions are in relative agreement (Figure 3). However, there are some 
notable differences. At the finer spatial resolution (1x1 km), PnET-II predictions are significantly 
higher than the 3-PG estimates for all cover types (Wilcoxon Rank-Sum Test, p<0.001). For the 
10x10 km resolution, however, there are no systematic patterns across all cover types. The 
scatterplots also illustrate the relative variance in estimates between the two models. For the 
equilibrium PnET-II model, the variation within each cover type is relatively low, while the non-
equilibrium 3-PG estimates vary over a much wider range. 

 
Figure 3. Scatterplot diagrams comparing estimates from the two models.  

On a per-meter basis, increasing spatial resolution has a significant effect on model predictions 
(Wilcoxon Rank-Sum Test, p < 0.001). That is, mean predictions were significantly different 
between the 1x1 km and 10x10 km predictions for both models and all cover types (Table 1). 
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However, there were no systematic changes in the patterns of variation within and between cover 
types. For example, aggregating the Spruce-Fir cover type led to an increase in variation for the 
PnET-II predictions, but a decrease in variation for the 3-PG predictions. The reverse pattern is 
true for the Maple-Basswood cover type. This suggests that aggregation may have non-uniform 
and non-linear effects between the mean and variance. Thus, it appears unsafe to assume that 
aggregating data will have a uniform and linear influence on model predictions.  

Table 1: Scale effects on average model NPP predictions. 
 Cover Type 

 Overall Pine Spruce-Fir Aspen-Birch Maple-Basswood 

Resolution 1x1 km 10x10 km 1x1 km 10x10 km 1x1 km 10x10 km 1x1 km 10x10 km 1x1 km 10x10 km

Num. Cells 25885 299 1720 15 9599 97 13658 181 908 4 
% Area 100 100 6.6 5 37.1 32.4 52.8 60.5 3.5 1.3 
PnET-II Mean  
(Std. Dev) 

842.8 
(255.0) 

783.2 
(218.7) 

783.2 
(17.9) 

757.9  
(19.3) 

524.9 
(9.4) 

494.3 
(19.2) 

1064.0 
(33.6) 

936.6 
(99.3) 

989.3 
(55.1) 

889.0 
(25.3) 

3-PG Mean  
(Std. Dev) 

788.8 
(246.6) 

820.9 
(233.8) 

729.1 
(18.9) 

713.5 
(77.0) 

482.7 
(20.8)

527.5 
(9.26) 

1003.4 
(37.7) 

984.5 
(123.7) 

911.1 
(44.1) 

898.1 
(85.8) 

 
Figure 4 provides maps of the NPP predictions for the two models and two spatial scales. From 
visual observation it appears that the data are spatially autocorrelated. Some general trends are 
discernable. For example, the area of highest productivity is located in the south central portion 
of the study area that contains the more productive upland forests. 

3-PG 1x1 km (I = 0.56)

3-PG 10x10 km (I = 0.32)PnET-II 10x10 km (I = 0.32)

0 50 100 Kilometers
N

NPP (g C m-2 yr-2)
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801 - 1000
1001 - 1200
1200 +

Study Area

PnET-II 1x1 km (I = 0.58)

 
Figure 4. NPP predictions for the two models and two spatial resolutions, including Moran’s I values. 
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Moran’s I values indicate a positive spatial autocorrelation for all four modeling scenarios, with 
the two 1x1 km scenarios having a similar and higher autocorrelation than the 10x10 scenarios 
(Figure 4). The positive autocorrelation matches a visual interpretation of the NPP maps. This 
decreased autocorrelation at the coarser scale could be due to the large perimeter and relatively 
high number of no-value cells for the coarse data. 
 
Model validation was not performed for any specific location within the study area. Because our 
objectives focus on regional forest production estimates, we chose to only compare modeled 
estimates against those from other studies in the region (Fassnacht and Gower 1996; Hall et al. 
1992) and against aggregated estimates from the FIA database (Brown and Schroeder 1999). 
Table 2 compares NPP predictions for previous studies within or near our study area.  

Table 2: Comparison of published NPP estimates against estimates from this study. 
  NPP Estimate Range (g C m-2 yr-1) 

Cover Type Source External PnET-II 3-PG 
Pine Fassnacht & Gower, 1996 390 – 850 707 – 836 615 – 819 

Maple-Basswood Fassnacht & Gower, 1996 290 – 1150 768 – 1047 728 – 1011 
Spruce-Fir Hall et al., 1992 40 – 572 425 – 561 444 – 549 

Aspen-Birch Hall et al., 1992 190 – 1199 724 – 1250 713 – 1174 
Hardwood species Brown & Schroeder, 1999 410 – 800 724 – 1250 713 – 1174 
Softwood Species Brown & Schroeder, 1999 210 – 600 425 – 836 444 – 819 

In all cases but one, both the PnET and 3-PG estimates fell below the upper range of estimates 
from the other studies. However, in all cases, the minimum estimates from the other studies were 
well below the minimum estimates from our study. Thus, the predictions in this study may have 
an upward bias on NPP estimates. The sharpest contrast in estimates is between our study and the 
Hardwood Species estimates from the FIA based study (Brown and Schroeder 1999). Brown and 
Schroeder use a county level aggregation and a slightly different definition of Aboveground NPP 
(i.e., focusing on woody biomass), which may account for part of the difference in estimates.  
 

DISCUSSION 
 
This study highlights several key considerations in process-based models of forest production. 
On the positive side, obtaining reasonable forest production estimates is possible using readily 
available software tools and data sets, and once a modeling framework is established, a vast 
variety of analyses can be conducted. On the negative side, this study suggests that scale effects, 
data aggregation, and parameterization (among other things) can significantly influence or bias 
model predictions and results. Clearly, the decisions made during model implementation are very 
important. As such, a well-organized and thorough implementation framework is paramount to 
the success of model application.  
 
Forest growth models have often been implemented for independent, single-use studies. 
Although data and the core model are regularly reused, the modeling process flow, technological 
setup and analyses are often recreated for each separate modeling study. There are, however, 
several identifiable model implementation components that are common across studies. For 
example, studies typically contain data preparation, parameter calibration, sensitivity analysis 
and report resulting phases.  

 75



 

 
For this framework (Figure 5), we identify four general components of model implementation. 
First, there is the model itself, which is considered here to be a “black box” model for which the 
inputs and outputs are the primary concern, not the internal model algorithms. Second, model 
implementations require data sources and data stores for both inputs and outputs. Third, 
technological processing is required in order to manage data and convert between formats. 
Finally, there are ecological model considerations, which include the scientifically based 
methods and decisions generally included with model studies. 

 
Figure 5. Conceptual framework for implementing regional scale process-based forest production models. 

A fundamental decision in spatially explicit, process-based modeling is the relationship between 
the model and the GIS. Figure 5 contains a conceptual flowchart for a traditional “model-
centered” framework. This approach requires the user to incorporate the various components, 
understand and properly address the ecological model considerations, and properly validate and 
report the results, and is arguably the most common approach in scientific modeling studies. 
Mitasova and Mitas (2002) identify this approach as an “import/export” (or “loose coupling”) 
interface between the model and GIS (Figure 6). Two alternatives include an “embedded 
coupling,” or full integration of the model within the GIS, and a “tight coupling,” which provide 
of a common interface between the GIS and model.  
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Figure 6. Visualizations of three categories of integration between models and GIS. 

Overall, there is a trade-off between end-user friendliness of the more fully integrated 
alternatives and development flexibility of the less integrated alternatives. With recent advances 
in GIS software capabilities, such as the Microsoft COM-compliant structure in both ESRI’s 
ArcGIS software suite and IDRISI’s Kilimanjaro package, it is becoming easier to integrate 
models within a GIS. Conversely, popular scripting languages such as Perl and Python can be 
used as relatively simple and flexible “wrapper” programs in which to link the various model 
components in a less rigid arrangement. Thus, the technological tools are available to meet a 
variety of modeling approaches. 
 
Another decision point in process-based modeling relates to topics primarily in the scientific 
domain, including parameterizations, sensitivity analyses, scale effects, and validation. Over the 
past several years university-level courses, public short courses, and publications have been 
developed to explore the alternatives and consequences of these modeling considerations. 
Additionally, a variety of software tools have been developed to aid the process. For example, 
PEST (S.S. Papadopulos and Associates, Inc. 2004) is a model-independent parameter estimation 
and uncertainty analysis package used across many scientific and engineering disciplines. 
Clearly, a wide assortment of resources are available to aid the model implementation process. 
 
Finally, this study supports the argument that every study is only as good as its data. The results 
of this study suggest that it is possible to get reasonable estimates of forest production with 
generic data. With improvements in data quality, model prediction accuracy will improve. 
Acquisition and assimilation of various data sets into a common format, resolution and extent is 
challenging.  As with most types of GIS analyses, special attention should be given to the data 
preparation phase. 
 

CONCLUSIONS 
 
This study used a sample modeling implementation in northeastern Minnesota as the basis for 
identifying a framework for implementing regional-scale forest production models. Using the 
PnET-II and 3-PG models with publicly available data sets, forest production estimates were 
comparable to estimates from other studies in the region in terms of mean production estimates 
and spatial patterns. The four general components of the modeling framework include the model 
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itself, technological processing steps, data sources and stores, and ecological modeling 
considerations.  
 
It is apparent that specialized training is required to implement process-based models in a 
production environment. This includes general understanding of the ecological processes being 
modeled, specific knowledge of the computer-technologies being used, and scientific 
comprehension of the statistical, analytical, and scaling issues surrounding process-based 
models. With improved model implementations and proper training, a myriad of new 
management modeling analyses are possible. 
 
To date, there is only one documented example of the 3-PG model being used in an operational 
environment (Almeida et al. 2002), and no known operational uses of PnET-II have been 
identified. Indeed, process-based models have yet to find a widespread niche in traditional forest 
management. While citing several key challenges for using process-based models operationally 
(e.g., improving C allocation routines, scaling, etc), Landsberg (2003) identifies the primary 
challenge as a need for communication between model developers and forest managers. 
Addressing the information system and GIS components may provide a common ground for 
beginning this communication. 
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