
Q: Can the security, usability, and software engineering life cycles be blended into a
comprehensive and effective single process for developing software?

A: Yes, by shaping curriculum models for early exposure

 Heather Richter Lipford Dugald Ralph Hutchings

We contend that the one of the difficulties in blending security, usability, and software engineering
processes arises from the educational experience typical for undergraduate students in computer science,
computer information systems, and other IT-oriented disciplines. In early programming and technology
courses, instructors often face difficult decisions of what basic topics to include and exclude from the
course, let alone whether to address “other” topics of security and usability. Students are then unlikely to
see these topics until later, more advanced courses. This early lack of exposure leads to an attitude
among software developers that security, usability, and software engineering are separate, rather than in-
terrelated, concerns. In turn, this may contribute to developers’ over-reliance on others, such as designers
or a software security group, to address those issues. Conversely, we believe that if students are exposed
to these topics early, then those attitudes should reverse.

A main challenge of implementing an early exposure strategy is selecting security and usability topics that
relate to, and do not interfere with, the important primary content of the basic building blocks of software
development. Yet we believe that the computing community could identify the most easily adopted,
adapted, or understood elements of security or usability that would be a natural fit with existing course
material. Take for example the topic of input validation, in which software code first checks the user-
provided input prior to processing or analyzing it. This topic is not only a sound programming topic, but
also can be treated as a security topic (helping to prevent unanticipated and possibly dangerous program
behavior) and as a usability topic (altering the interface when provided input was invalid, or designing
the software to prevent erroneous input in the first place) even in early courses. If the instructor has the
resources to easily describe such examples from the perspective of security and usability, then the student
receives the exposure. Efforts at such integration into early curricula are occurring with respect to securi-
ty, usability, or software engineering separately, but integrated approaches are needed.

In addition to identifying specific integrated topics, we need to develop examples, assignments, and tools
that embody those topics. For example, eliminating security bugs from examples in programming text-
books, and providing example applications with usable security. Code comments or additional course re-
sources should highlight the variety of implications of those examples. This will allow students to learn
good habits early on, even if they are not fully taught the complex concepts behind them until later.

While early exposure to security and usability topics within the development process should facilitate
positive student attitudes about an integrated model of software engineering, it is unlikely enough to tru-
ly change the view of “standard” SDLC elements. We believe however that successful early introduction
of security and usability topics will encourage educators to include these topics throughout the curricula
and perhaps even influence the model curricula of ACM, AIS, and other professional organizations. We
briefly highlight two examples of existing curricula that provide students with opportunities beyond the
initial classes.

At Bowling Green State University (where one author held a position for two years), all undergraduate
computer science students must enroll in an upper-level Usability Engineering course that emphasizes an
integrated approach to software engineering (i.e., the course is neither a human-computer interaction
course nor a software engineering course). The course involves inspection of traditional software engi-
neering and usability design life-cycles and highlights the many areas where the approaches overlap or
complement one another. It is clear from experience working with the students that program graduates

are sensitive to the needs of users and create software that exhibits better usability than students who are
otherwise not exposed to the topic. Simply stated, the students know how to create usable software.

Whereas BGSU has a CS curriculum that explicitly integrates usability and software engineering in a re-
quired class, Elon University’s computer information systems students experience elements of usability
and security in a wider variety of classes. The security-oriented class includes a discussion of the level of
security that is appropriate for a proposed system and the tradeoffs made between system security and
user memorability. The usability-oriented class employs a project-based method in which students build
Web sites for real community organizations that allow organization members and interested community
members different levels of access to the site. Students consider the appropriate tasks for each type of us-
er and use role-based security methods to implement and test Web sites in addition to performing usabil-
ity testing, all as part of a typical design life-cycle. While the Elon and BGSU majors and approach differ,
in both cases students leave the institutions with a SDLC model that incorporates usability or security.

UNC Charlotte is examining a different approach in addressing early exposure of secure programming
concepts. We are developing the Assured Software IDE plug-in (ASIDE) to warn programmers of poten-
tial vulnerabilities in their code, and assist them in addressing these vulnerabilities. For example, when
input is detected, the tool would alert the programmer of the need to do input validation, allow the user
to interactively choose the type of input, and automatically generate validation code. This tool will serve
as an educational opportunity and reinforcement of security concerns during any programming activities
throughout a student’s education. We believe that there likely exist similar opportunities to integrate oth-
er security, usability, and software engineering concerns into the tools students regularly use during their
education, reinforcing these concepts both within and outside of the classroom.

Given the variety of software development process models taught and used in practice, we believe that
there is not going to be only one way to integrate security, usability, and software development
processes. However, by promoting the integration of these concepts early on, developers will in turn
create and adopt effective and integrated processes and practices. Thus, in conclusion, we contend that by
starting with the integration of small, easily understood, and broadly applicable security and usability
principles, two ripple effects can result: (1) students will carry positive attitudes and expectations about
incorporating security and usability into their work in industry; and (2) instructors will be more likely to
evaluate the role of usability and security throughout the curricula of their departments and schools, thus
allowing even deeper experiences for students.

About the authors

Dr. Heather Richter Lipford is an Assistant Professor in the Department of Software and Information Sys-
tems at UNC Charlotte. With a background in Human Computer Interaction, her primary area of re-
search is currently usable security and privacy, focused in particular on improving personal privacy
management through developing usable interaction and interface mechanisms. She teaches courses on
Human Computer Interaction and Usable Security.

Dr. Dugald Ralph Hutchings is an Assistant Professor in the Computing Sciences Department at Elon
University. His current research interests include usable security, visual analytics, and multi-display in-
teraction. He teaches courses in introductory programming, user-centered Web design, and systems
analysis & design.

Both Heather and Duke completed their graduate research work with the GVU Center at Georgia Tech.
They are currently collaborating on the investigation of the educational uses of the ASIDE plug-in.

