
 1

An interview-based study of display space management

Technical Report GIT-GVU-03-17

May 2003

Dugald Ralph Hutchings, John Stasko
College of Computing/GVU Center

Georgia Institute of Technology
Atlanta, GA 30332 USA

{hutch, stasko}@cc.gatech.edu

ABSTRACT
There are a number of challenges for researchers in the area
of window and screen space management: (1) many
systems have been proposed, but little study on people’s
window interaction habits exists, (2) users of emerging
display systems have different properties and needs than
users of single-display systems, yet users might also
interact with several different types of systems, and (3)
evaluation is difficult since habits are unknown but more
importantly there are two very different roles that managers
must fulfill: allow the user to complete one task through the
aid of several windows and be able to switch to or monitor
a different task. To begin to answer these challenges, we
present a interview-based study of window system users
that investigates the way they manage screen space.
Results include the characteristics common across all users
as well as a classification of management styles. We also
present some implications for building and evaluating
window and display space management systems.

KEYWORDS
interview, window management, space management,
multiple monitors, multiple desktops, user interaction

INTRODUCTION
The personal computer (PC) has undergone dramatic
changes over the past 25 years. The huge gains in
processor speed and physical memory and the popularity of
the Internet have allowed people to use computers in an
astonishing variety of ways. Throughout this period, the
desktop, and its related window system, have changed very
little. Many researchers, organizations, and individuals
have built enhanced window systems, some of which have
been evaluated on users completing very specific tasks.
However, because of the existence of only a few studies of
the actual practices of users of window systems (which, for
PCs, is nearly all users), one cannot be certain whether
these specific tasks are representative of the tasks that users
complete through window interaction. One must also
consider the age of many of these studies, which were
completed in the 1980s (e.g. [Bly] and [Gaylin]).

Even supposing the existence of studies on actual window
management practices, it is difficult to determine what
aspect of a window system to evaluate because defining the
“task” of window management is very difficult. Window
managers need to serve two roles: allow the user to (1)
complete one task through the aid of several windows and
(2) be able to switch to or monitor a different task or set of
tasks. For example, the writing of this paper was
accomplished through a window with the current draft, a
window with the previous draft, a window with the
intended outline for the paper, several windows with
references and resources, and a window displaying a list of
images needed for the paper, all of which may or may not
have been open simultaneously. Additionally, at several
points during the writing of this paper, one author also had
to prepare to run a meeting, which required a windows for
editing the agenda, viewing a personal calendar, editing
web pages, viewing web pages, and checking email. The
same author also displayed a portion of his email nearly all
of the time, in order to monitor incoming communications,
whether they related to the paper, the meeting, or
something else entirely. Gauging the effectiveness of the
window manager requires measuring how well the user
could both switch among different tasks and how well the
user could complete one task; suitably defining how well is
a major challenge unto itself.

Not only was writing this paper accomplished alongside
other tasks, but it was accomplished on more than a single
system: a laptop and a multiple-monitor desktop. Stable
display systems are becoming more complex and more
commonplace (including multiple-monitors, large displays,
and multi-device systems such as handheld PDAs and PCs
used in tandem). Powerful systems are increasingly able to
fit in portable devices, such as laptops. Moreover, the
ability to access remote systems graphically, whether
through networking [VNC] or emulators [VirtualPC], is
also becoming robust and oft-used. This creates a unique
challenge for emerging windowing systems: the ability to
effectively manage a large display space while still being
relevant to the small display areas that have dominated

 2

interaction for the past 25 years.

We have briefly discussed three challenges for window
management systems: (1) many systems have been
proposed, but little study on people’s window interaction
habits exists, (2) evaluation is difficult since habits are
unknown but more importantly there are two very different
roles that managers must fulfill, and (3) users of emerging
display systems have different properties and needs than
users of single-display systems, yet users might also
interact with several different types of systems. Hence in
this paper we present results from a study of 17 users in
order to fill the research gap left by (1), make some
headway in better understanding (2), and determine the
elements common to any display system discussed in (3).

RELATED WORK
Work in the area of window management falls into two
rough categories: work such as [Henderson], [Badros], and
[Beaudouin-Lafon] claim to be beneficial to users because
the systems attempt to imitate the way that people use
space in the real world; and work such as [Kandogan],
[Robertson], [Bell], [Funke], [Stille], and [Miah] claim to
be beneficial to users because of the gains seen in task
completion time as compared to a standard windowing
system. There are potential issues with evaluation in each
case. In the former case, note that affordances of computer
screens are not necessarily equivalent to affordances of
physical objects. Moreover, the ubiquity of personal
computers and window systems implies that drawing
parallels to the management of space in the “real world”
may be unnecessary or even inefficient, as interacting with
windows is now an event unto itself. In the latter case,
evaluation may be unreliable if the selected tasks are not
indicative of actual use of screen space, or if the interface is
inefficient for the host of other tasks that the window
systems help to support. A few systems give interaction
techniques to use space to more easily manage tasks (such
as [Robertson]), but do not show a great benefit in actually
completing those tasks. This analysis of previous work is
certainly not to detract from its contributions. Rather, it is
to show the aforementioned inherent difficulty in
evaluating window systems and window interaction
techniques, as well as to illuminate the surprising absence
of work that investigates the actual space management
practices of window users (since so few can be cited, with
[Bly] and [Gaylin] being notable, but old, exceptions).

In addition to analyzing proposed systems or techniques in
the face of multiple-window coordination, one must also
consider whether the proposal is effective for managing
space and tasks on emerging display systems. Recent work
has analyzed the emergence of multiple-monitor systems
(multimon) by investigating the differences between
multimon and a single monitor [Grudin] and differences
between multimon and virtual desktops [Ringel]. One
might also consider how the older space management
proposals scale to multimon or to very large single displays
such as the Perspective Wall [Guimbretière]. Note that we

specifically avoid collaborative use of multiple monitors
([Nelson] and [Rodden]), but do leave the matter open for
future consideration.

STUDY SETUP
We interviewed 17 people (10 female, 7 male) in their
natural workspaces to ascertain how they manage their
screen space. Each interview ranged between 30 and 60
minutes and was audio-recorded. The interviewer captured
screen contents at least once for each participant using
built-in window system or operating system operations and
snapped photographs of the working space of each
participant. Each participant had the opportunity to prevent
the interviewer from capturing either audio or video.

15 users had desktop PCs, 11 of which were single-
monitor, 3 of which were dual-monitor, and one user had
two independent single-monitor systems on the same desk;
2 users used a laptop exclusively (at least 3 others has
laptops on their desks which they either used at home or
infrequently at work), one of whom connected the laptop to
another monitor when he used the laptop on his desk.
Window systems included Windows 2000 (7), Windows
XP (2), Mac OS 9 (2), CDE on SunOS (2), Enlightenment
on Linux (2), KDE on Linux (1), and the participant with
two independent systems ran SunOS’s CDE and Windows
2000 (so 6 users used multiple-desktop systems).
Occupations included computer science students (5),
chemistry students (2), immunology students (2), computer
science professors (2), administrative assistants (2),
technology support staff members (2), a mathematics
student, and a virology researcher. 11 users identified
themselves as constant users of their systems, 2 as
occasional users of their systems (meaning that they used
their system for a one or two hours per day), and 4 as
fluctuating users (some days they are constant users and
other days they are occasional users or do not use their
system whatsoever). Screen resolutions ranged wildly,
with the endpoints of one 800×600 pixel display and two
1600×1200 pixel displays.

As the reader can plainly see, the group of users was rather
heterogeneous with respect to system characteristics,
although homogenous with respect to occupation type. We
specifically targeted this group of workers because they
were representative of information workers in any company
or group and because we predict that they will likely be
early adopters of emerging display technologies, if they had
not already done so. By choosing users of such a wide
variety of systems, we aimed to eliminate any effect that
specific systems had on users, as well as determine if
specific systems were correlated to specific display
management behaviors. We first window management
styles that emerged from our study and then present results
that cross system lines entirely. First though, we define a
few terms to allay any confusion regarding their use.

DEFINITIONS
As the reader will soon discover, it is important to carefully
define the idea of focus. We use input focus to refer to the

 3

window that has system focus, i.e., the window that
exclusively receives input from the user. We use user
focus to refer to the window that the user is actively
viewing, which may or may not have input focus. This is a
crucial separation since, for example, the coordination of
multiple windows may involve many changes in user focus,
but few changes in input focus. In particular, we use
glancing to refer to the action of shifting user focus without
shifting input focus. When we use focus without
qualification, we mean both input focus and user focus.

We also define the notion of an information region of a
window. This is any UI component that displays
information useful to the user while the window does not
have input focus. For example, a classic web browser is
depicted in Figure 1, with the information region coarsely
encapsulated in a green rectangle. Note how the
information region is much smaller than the window, as
other parts of the window are useless if the window does
not have input focus.

Finally, note that a window can be repositioned in many
ways. A window has a width (x-dimension), height (y-
dimension), and a depth (z-dimension), all of which can be
manipulated directly by the user. Furthermore, resizing a
window changes its height or width (and may require a
change in depth as well), so resizing may also be thought of
as repositioning.

MANAGEMENT STYLES
In this section, we discuss the general ways that people
interact with window systems and organize space. First
though, let us define a few terms. Resize means to change
the height or width of a window, move means to change the

left-to-right or up-to-down position of a window, and stack
means to change the top-to-bottom position of a window.

Relationship of window size to interaction techniques
People have a variety of ways in which they organize
screen space, and few, if any, people organize their
windows in exactly the same way. In fact the
idiosyncrasies that people have are quite amazing and
could make a paper unto itself. Nevertheless, people fall
into three rather broad categories: maximizers, effective
maximizers, and careful coordinators. Maximizers simply
maximize every window and use stacking to switch among
windows. Effective maximizers are a little different. These
users have one or more smaller windows with which they
frequently interact or glance (such as IM clients or music
players), or they have a bank of desktop icons uncovered,
as described previously. Users will resize all or most other
windows to occupy the remaining portion of the screen and
use stacking to switch among these effectively maximized
windows. Interestingly, no effective maximizers use
“always on top” window features, if such features were
available in the window system. When asked about this,
each replied in the following vein: “Every once in awhile, I
have to fully maximize a window, which means having an
always on top window is annoying. It’s easier for me to
just manually resize the other windows.” Careful
coordinators are those who tend to have many windows
visible simultaneously (which means none of them are
maximized) or, when they have a maximized window, are
working in an application that itself has many windows.
Careful coordinators also seemed to have similar widths for
similar applications. In each case, web browsers, terminal
windows, email windows, IM windows, and text editing
windows all had the same width, although the length of
each window might vary. All but one of the multiple
desktop users that we interviewed were careful
coordinators (with the other being an effective maximizer).

Participants’ techniques for interacting with windows were
much more broad. We found five different ways people
switched among windows: (1) moving the mouse directly
to the window (sometimes requiring a click as well), (2)
using the keyboard (usually “alt-tab”), (3) using a window-
system supplied interaction area, such as a taskbar, (4)
minimizing the current window and stacking the desired
window, and (5) moving windows at the top of the stack
until the desired window was found (although this
technique was rarely used). Most participants indicated
that they exclusively use one technique, although a few
mixed techniques (mostly mixing (1) with (3)). Among
multiple desktop users, methods (2) and (3) were used to
switch to entirely different desktops.

The relationship between placement and interaction is very
interesting. All maximizers used a taskbar to switch among
windows. This makes a lot of sense, as the taskbar is easily
accessed regardless of window size, making window
switching very easy for this type of user. These users also
had similar screen setups and resolutions (single-monitor

Figure 1: A web browser window, with the information
region coarsely marked by the dashed rectangle.

 4

and 1024 × 768 or smaller) and all used Microsoft
Windows. Although one might expect a similar statement
about effective maximizers, this is not the case. Every
effective maximizer used direct switching to move between
an effectively maximized window and a window or icon
elsewhere in the screen. But effective maximizers
composed a variety of window systems and interaction
techniques (for switching among effectively maximized
windows). Windows users used the taskbar, Mac9 users
used minimize/restore cycles, and multiple-desktop-system
users tended to keep only one effectively maximized
window per desktop, so switching windows equated to
switching desktops. Careful coordinators either use direct
switching exclusively or in concert with a taskbar, although
the taskbar seems to be used only when the window to be
switched to is nowhere on screen. All careful coordinators
except one had screen resolutions greater than 1024 × 768
pixels, and many used multiple desktops.

CROSS-CUTTING RESULTS
It is certainly not surprising that all of the participants,
whether occasional users or system administrators,
indicated that everyday interaction involves coordination of
multiple windows, whether completing one task with
multiple windows or managing several tasks, each with one
or more windows. However, several factors contribute to
the way that people manage many windows occupying the
screen space of the participants. We present those factors
in the following subsections, and conclude each subsection
with an implication for design and evaluation.

Invisibility is as important as visibility
Using information from one window to interact with
another window is quite common, whether it be consulting
an outline in order to write a paper, compiling email
message comments into a coherent digest, grabbing images
from a web page, or using documentation to write a piece
of computer code. Users employ moving, resizing, and re-
layering of windows in various ways to accommodate the
use of information. But participants also use these
techniques to purposefully hide information as well! We
discuss three different ways people hide windows.

One instance of hiding is when focus is directed at several
windows in short frequencies or when focus is dominated
by only a few windows. Being able to glance at the
different windows is unimportant, but being able to quickly
access a window is. Since users find it much quicker to
change the depth of a window than to move and especially
resize windows, this is much preferred over a tiling
window manager. Many examples are evident in
participant data; a very common example is leaving some
portion of an email window visible while completing
another task.

Another instance of purposeful hiding is when the
interaction in one window (the main window) can be aided
by the information area of one or more windows (the
secondary window(s)). Usually, user focus will shift

among the entire set of windows, while input focus will
mostly remain in the main window. Secondary windows
can be distracting for many reasons. One factor is the
presence of non-change-blind animations in the non-
information areas. However, a portion of the information
area can be important for users to view, making
minimization of the window impossible. Thus, users will
attempt to hide the distracting areas by moving those areas
off-screen or by allowing the main window or a secondary
window cover the area (a common case among participants
for this type of hiding is for advertisements in web pages).
Another distracting factor could simply be the sheer
amount of information contained in a secondary window,
relative to the information that is relevant to the main
window. Hiding a large portion of the secondary
window(s) allows users to more quickly locate the relevant
information and focus on the task at hand. Additionally,
resizing the secondary window is often undesirable as the
layout of the information is then subject to change, causing
disorientation and unnecessary interaction. For example,
participant 07 displayed a portion of the outline of a very
large document in a secondary window.

Another type of information hiding relates to privacy. All
participants use email and many had email programs
running constantly. A number of participants also used
instant messaging to communicate. Others ran programs
that contained secure or proprietary information. This is a
difficult situation, since the information is frequently
accessed or consulted, yet should remain invisible when not
in use. As participant 02, who works in a laboratory, said,
“The desktop is not as personal as just one person’s
vision,” or, as participant 14, who has a private office,
stated, “I don’t want to have [my email] visible on the
screen when people walk in. I’m pretty private about it ...
hiding things is good.” Sometimes users minimize
communications client windows or place them on dedicated
a desktop to easily and completely hide them. However,
because these clients are frequently used, they are often
partially hidden behind other windows. In particular,
instant messaging requires the focus to switch over short
intervals, making minimization or placement to exclusive
desktops inefficient due to interaction overhead (although
one user of instant messaging placed all communication
windows on one desktop).

Implication for design: When developing new systems,
worthwhile operations for interaction could include the
ability to automatically arrange a selected set of windows
so that each one has some portion visible regardless of its
depth (for quick access), the ability to hide specific
portions of a window without changing the layout of
information contained in that window (for both
coordination and privacy maintenance). In fact, we discuss
the latter later in this paper.

Implication for evaluation: Evaluators of current and new
systems could test how easily a group of windows can be
displayed so that each has a visible part, and how easily

 5

portions of a window can be hidden by the user, testing
separately window coordination and privacy maintenance.

Strict tiling is never employed
An observation related to intentional hiding of windows is
that users never strictly tile all windows. This is probably
not too surprising for users of one-screen, one desktop
systems, especially with the importance of window content
hiding explained in the previous subsection and the very
constrained resource of screen space. However, the same
observation holds for users for virtual desktop systems,
multiple monitor systems, and even the one participant who
employed both.

Strictly speaking, virtual desktop systems cannot allow for
tiled windows because by the definition of tiling, all visible
windows are displayed on the screen simultaneously.
However, even relaxing the definition of tiling to the
current screen contents, we found that users did not tile
windows. Excluding the reasons described above, we
found two additional reasons for hiding contents in other
windows. For windows that do not have input focus, it is
unnecessary to see the window components because they
do not display any information. Some users would cover
the components to yield more space to the window of input
focus while keeping the window information visible. Other
users wanted to temporarily allocate a large amount of
space to one window without disturbing the locations of
other windows on the screen, since the other windows had
been carefully placed. Enforcing a tiling system could
make these users much more inefficient. Participant 10
perhaps phrased it best: “[There are] times when I want to
look at one window, edit another window, [and] I don't
really need to see [all of] what I am editing, so I have them
overlap so I can look at the one and focus on the other.”

Implication for design: One of the key disadvantages of a
tiling window manager is the disturbance caused to
carefully positioned windows. Thus tiling systems must
allow users the ability to quickly recover to a previous
window configuration. Moreover, when systems have
more than one display (possibly separated by some amount
of physical space), tiling mechanisms may fail to work.
Possibly exploring alternate ways of tiling (for example
where some parts of a window can be at different depths
than other windows) may also be in order.

Implication for evaluation: Since overlapping windows is
such a dominant paradigm, comparing any new tiling
systems to overlapping counterparts seems to be in order.
Furthermore, the two dominant roles (completing one task
with several windows and the ability to switch among
different tasks rapidly) could be measured.

Empty space is not really empty
When we first started the interview with each participant,
we asked the person to explain the layout of the display
(which we requested that the participant leave “as is”
before we came to interview), and then asked to show a
typical layout of the screen. Some participants completely

filled the screen(s) with windows, leaving no pixel of
screen space without a window. Others left some screen
space vacant, but of those participants, all using exactly one
desktop left a bank of desktop icons uncovered. See Figure
2 for an example of this phenomenon.

Part of the management activities of these people included
ensuring that important icons always remained uncovered.
Icons serve many functions (sometimes more than one
simultaneously). Desktop icons can act as “quick
launches” for commonly used applications or file system
locations, “status monitors” for events such as print jobs,
important interactive components (such as the “Trash” or
“Recycle Bin” icon, which chiefly allows people to delete
files which will later be recoverable), easily accessed
temporary files, or as reminders for the user to do
something. The difference between reminders and “quick
launches” or “temporaries” is that reminder files need
urgent user attention, whereas the other two do not. So
while covering the former (and also the interactive icons)
might be an annoyance, covering the latter might be
detrimental to the work of the user. Users in this category
avoid the “maximize window” function specifically to keep
important icons uncovered.

Implication for design: Future systems might explore how
to designate a group of icons as “non-empty space,” where,
for example, a “maximize window” function does not cover
the icons, but manual resizing of windows will allow the
icons to be covered. One might also allow arbitrary regions
to remain visible under “automatic” operations (such as
maximize) while able to be occluded under “manual”
operations (such as a resizing of a window).

Implication for evaluation: Evaluators might measure
how easy it is for users to keep a certain section of empty
screen space visible. For systems that do not explicitly
allow such functionality, evaluators might measure how
easily users can switch to the desktop then revert to an
original window configuration (as well as how obvious it is

Figure 2: Icons left uncovered on Participant 04’s desktop.

 6

to do so).

Windows can act as reminders
Icons are not the only elements of the display system that
act as reminders. Often, people are working on one
window or one task and must switch to another window or
task. Other times, windows automatically grab the input
focus of the user, causing the user to abruptly switch user
focus to the new window. Whereas in the past, with low
power or low memory machine, this situation might call for
users to close windows and force themselves to remember
to later return to the application contained in the window,
users today can simply move one more or windows to the
side, to another desktop, or minimized to a smaller screen
location and return to it later. These reminding windows
were especially prevalent among participants who were
commonly interrupted (such as the administrative
assistants, who both had several windows opened to tasks
that had to be abandoned to attend to an urgent task) or
participants who constantly monitored and interacted with
communication windows (such as participant 05, who said
“[There are usually] at least 6 things [in the dock] as
reminders to come back to a task [that I have not yet
finished]... email is the center of my universe [and]
dominates everything I do.” See Figure 3 for a view of one
of participant 05’s desktops). The interesting point to note
here is that although information in windows occupying the
screen is not used for the task at hand, the display of such
information is very important to the user and can aid in
switching tasks. Users frequently interrupted all mentioned
a desire to have an area on the screen to drop windows that
should be returned to later (similar in nature to the use of
the Trash/Recycle Bin icon).

Implication for design: Designers of adaptive window
managers could heed that “inactive” or “ignored” windows
may be very important to the user, and should not be
removed from sight under any circumstances. New
systems may consider how to place windows that need later

attention, perhaps by dedicating a special area for users to
drop such windows, or a “super window” that contains all
of the reminder windows and uses change-blind animations
to cycle through windows that need later attention.

Implication for evaluation: Evaluators should simply note
that windows appearing on the screen or minimized away
to the taskbar simply represent tasks that need later
completion. Evaluators could possibly measure whether
users can separate windows needing later attention (such as
tasks-in-progress) from groups of windows representing
common tasks.

The effect of input devices
Throughout our interviews, we found that the type of input
devices available to the participants guided the ways that
they managed screen space. There are a number of specific
examples, but space prohibits the publishing of all of them.
Thus we present the following example.

Participant 11 uses a laptop system that sits in a docking
station on his desk as shown in Figure 4. Attached to the
docking station is a flat panel display, giving a multimon
setup. Initially, 11 used the touchpad mouse on his
laptop’s keyboard. In order to move the mouse among
monitors, one to three additional runs of the finger across
the touch pad were needed. Because of this overhead, the
second monitor often contained windows which displayed
information but seldom or never received interaction (such
as web browsers). Then, 11 happened to attach a standard
desktop mouse to the docking station. From that point
forward, 11 mixed interaction more evenly across the
screens. For example, he commonly edits documents on
the attached monitor while interacting with emails about
the document on the other screen, or edits a web page on
one screen while viewing and updating the view on the
other screen.

Implication for design: There are many possible avenues
for future work. One is to simply study the management

Figure 3: Participant 05’s desktop. Windows that act as reminders to return to a task as encapsulates in green rectangles.

 7

affordances of different devices in order to tailor
management techniques. However, if supplying this
information to the windowing system (which is
traditionally a layer on top of the operating system), then
this observation might simply be damning. Another
possibility is for the window system to track how users use
input devices, and the dynamically provide information on
how the user can more effectively use the system (or
determine display techniques that aid the user’s habits).

Implication for evaluation: When evaluating a new
management system, researchers may take care to have
participants use a variety of input techniques to interact
with the system to provide additional reliability of results.
This will take particular importance as advanced input
techniques become more robust (such as voice commands,
eye-gaze tracking, and possibly brain-based interactions).

The power of defaults
Most modern window systems offer more than just the
standard window operations of add, delete, move, and
resize. Microsoft Windows and KDE, for example, have
an interaction area called a taskbar that chiefly contains (1)
an area for users to place icons as shortcuts to applications
and files, (2) an area of buttons for each window that
displays a small bit of the title bar of the window and
allows users to minimize, maximize, and raise the window.
Many users use this area to switch to and interact with
different windows and launch applications; some use it
exclusively to perform these actions. As a default, the
taskbar is located at the bottom of the display, orienting the
buttons horizontally, but the taskbar can be moved to any
edge of the screen, including the left or right, orienting the
buttons vertically. In the default case, once the number of
windows reaches a certain size (10 – 15 windows for a

1024 × 768 pixel resolution display), very little, if any, of
the title bar can be read and only the icons remain. n
participants we interviewed indicated that they will start
closing windows on the desktop for no other reason than to
make the taskbar readable. This problem rarely occurs
when the taskbar is oriented vertically, but users do not
think to move the taskbar to avoid the problem.

Another example concerns the multiple desktops on Sun’s
CDE. The bottom of the screen has a window with several
functions, once of which is to allow users to switch among
four different desktops. People we interviewed who use
Suns used between two and four of the desktops, but never
more, despite the fact that more desktops could be added
and two indicated that they could often use more than four
(one of whom was a system administrator!). A more
careful design of this system window might be able to
indicate how people could more easily add, delete, and
otherwise manage the desktops.

Implication for design: Developers may begin to consider
different default settings for different types of users,
different system setups (for example by attempting to
understand the number of displays). Additionally, more
obvious interaction techniques (such as a button to click to
add a desktop) could be useful, although the tradeoff for
screen space needs careful consideration.

Implication for evaluation: It is somewhat difficult to
gauge the effectiveness of system defaults when measuring
users against specific tasks. Longitudinal studies (even as
short as one week) would probably be more appropriate,
since users will have developed a management style for the
system (management styles are discussed later).

The effect of the physical environment
Perhaps the most surprising finding in this section is that
the physical environment surrounding the computer system
can have an effect on how people use screen space. The
amount and layout of space for input devices affects how
those input devices can be used, and this notion is best
illustrated through examples from our interviews.

Consider the case of Participant 12 (see Figure 5). She has
two independent systems on her desk, which means two
monitors, two mice, and two keyboards (and occasionally
also uses a laptop on the desk). The desk has a drop-down
tray in which the keyboard can be placed. Because of her
RSI, she uses the tray for both a keyboard and a mouse.
This has two effects: (1) the mouse has very little room to
move, which requires her to pick it up and drop it
frequently when moving the mouse pointer, and (2) she
uses the other system for absolutely nothing but email. For
awhile, she ran x2vnc [Hubbe], which allows one set of
input devices to control multiple systems. However, the
amount of pixels that she had to traverse was too large for
such a small mouse space: “I tried the one keyboard and
mouse, but it didn't work because of the stupid little space
for the mouse... I'm limited by the physical desk.”

Figure 4: Participant 11’s desk. A laptop is connected to a
docking station to allow the participant to easily attach a
standard desktop mouse (rather than use the touchpad on
the keyboard) and another monitor. Furthermore, the PDA
on the left is attached to the docking station and in sync
with the information on the laptop computer.

 8

Participant 09 is another interesting case. He has a heavily
customized window manager and multiple desktop system
on a laptop that he uses at home and at work. He uses the
keyboard whenever possible to interact with the computer,
but curiously has customized window and desktop
manipulations to occur through mouse movements and
button clicks. When asked about this, 09 responded
“because the mouse buttons are ‘right there.’” On the
laptop, mouse buttons are not much further away from
keyboard control keys than the rest of the keys themselves,
which allows him to use the mouse buttons in many ways,
including surrogate keyboard keys. He indicated that if he
used a desktop system, he would probably switch to
keyboard shortcuts in order to switch more quickly.

Implication for design and evaluation: Unfortunately,
there is very little that we can do about this aspect because
a system designer rarely has control over the physical
environment in which the system will be placed and used.
Furthermore, users at work rarely have control on the
physical devices available to them for interaction (for
example, participant 12 has been unable to secure funds to
purchase a more appropriate mouse).

DESIGN DIRECTIONS
Technology marches onward: displays support higher
resolution at lower cost, and operating systems and video
cards support more than one physical display on the same
computer. The analysis of our interviews indicate that the
maximizers will grow extinct as the technology that used to
engender such behavior also dies. The effective
maximizers and careful coordinators that exist now could
be aided by rethinking window interaction. We present
some ideas below based on our findings.

Invisibility and Rethinking Minimize & Resize
We noted previously that many instances of window
manipulation involved the purposeful hiding of window
contents. Other than “minimize,” window systems do not
have built-in functions that help users hide window
contents (although yet again the games industry has led the
way for the rest of the field by including in their games
“boss keys” that allow the user to place a fake picture of a
spreadsheet or other work-like application on the screen at
a moment’s notice). Moreover, hiding window contents
(and sometimes keeping other contents visible) is important
to users regardless of the amount of screen space that they
have available. So one possible direction is to aid users in
managing space by developing operations that better
decrease the amount of space occupied by a window.

Relevant Regions
One idea for diminishing the amount of space occupied by
a window is to allow the user a simple way to tell the
window system what parts of a window should be visible.
Consider for a moment AOL’s IM client window shown in
Figure 6. It not only contains a list of people who are also
online, but a menu, a logo, an advertisement, a label
indicating who’s buddy list this is, and two banks of large
graphical buttons for interacting with the client, all of

Figure 5: Participant 12’s desk. The black keyboard
corresponds to the monitor on the left because it is used for
all interaction not involving email communication, and thus
needs to be in the most comfortable location. The black
mouse is also placed next to the keyboard, but has a very
small space in which it can be moved.

Figure 6: The AIM client window. Notice how many
items in the interface are irrelevant when the window does
not have input focus.

 9

which is useless when the window has user focus but not
input focus. Moreover, if a user wants to send a message to
a buddy, the user need only click on the buddy’s name to
open a new IM window. The relevant region of the
window is only the buddy list for most of the time that the
window is on the screen.

So, we could diminish the amount of space occupied by the
window by simply allowing the user to draw a rectangle
about this relevant region, and removing the remainder of
the window contents, so the user can treat the region as a
window unto itself. Note how the standard version of
resize would not accomplish the same thing. If we resize
the window, the only part that becomes smaller is the
buddy list, which is exactly the important part.
Additionally, if we just scaled the window to the size of the
relevant region, it is unlikely that we could read the text of
the list, making glancing useless. Finally, relevant regions
is an ideal candidate for the window manager because they
are user-defined and may cover sections of UI components
(and users could use the regions regardless of applications).

The idea of relevant regions could also be extended to other
areas of space management for larger screens or multimon
environments. Consider the task of editing a web page:
commonly, the user has an editing window and a browser,
and the user must move the mouse back and forth a
considerable distance from the editing window to the
browser to update the changes by clicking the refresh
button. Suppose though that the user could draw a relevant
region around the refresh button, and make a copy of the
region that could be treated as its own window, even
though it is just a view onto the original window. Now, the
user could place the refresh button right next to the editor,
and just click the button directly and view the document in
the other screen. This allows the user to remotely control
applications, especially when they related to the task at
hand. Another example might be copying email UI
components to all of the screens and being able to control
the email display without having to constantly relocate the
mouse.

Rethinking Maximize
On a small resolution, single-display machine in which no
other windows need to be visible all of the time, the
maximize function serves as a nice way to quickly allocate
screen space to a window. However, we saw a group of
users who effectively maximize. We could alter maximize
slightly to be just the region of the screen for such
windows, rather than making users resize windows all of
the time. One example of allowing users to do this easily
would be to allow for the simple drawing of a “maximize
to” region on the desktop, where all maximized windows
would be resized and placed (perhaps similar in nature to
tabbed windows [Beaudouin-Lafon]). The advantages of
such a concept is that windows do not have to be assigned
“preferred sizes” and “preferred locations” and that when
the entirety of the screen space is needed, users can still
employ direct manipulation techniques to resize the

window further. A careful design is needed though, as we
noted previously that users often do not change window
system settings unless it is obvious how to do so. Note that
this technique might also extend to multiple-monitor
systems, where each monitor has a “maximize to” region,
given that the window system is aware of the number of
monitors in the system.

Window-level Undo
A large number of applications have an “undo” function
that allows a user to return to a previous state of the
application, usually to correct an error made in input.
Surprisingly, or review of literature in the area reveals that
this idea has never been applied to window and space
management. As mentioned, a class of users carefully
arrange their windows, and many techniques for interacting
with windows can disturb the stacking order of windows.
Furthermore, people make mistakes in arranging their
windows. Being able to revert to a previous state of
window arrangement can be very helpful. Obviously, a
corresponding “redo” function would complement a
window-level undo function.

Undo is somewhat hard to implement, however. For
example, how does one “undo” from creating a window?
One possibility is to minimize windows created since the
last window interaction. A more problematic recovery is
for the closing or deleting of a window. We could
introduce a “trash” or “recycle bin” functionality for the
windows themselves, but sometimes not allowing users to
directly cease an application could have deleterious effects
(such as hogging the CPU). A full implementation would
require careful thought and analysis of the situation, but it
appears that undo functionality could be extremely helpful.

CONCLUSION
We have presented several challenges for building and
evaluating window management systems: (1) many
systems have been proposed, but little study on people’s
window interaction habits exists, (2) evaluation is difficult
since habits are unknown but more importantly there are
two very different roles that managers must fulfill, and (3)
users of emerging display systems have different properties
and needs than users of single-display systems, yet users
might also interact with several different types of systems.
The study we presented begins to meet these challenges,
suggesting many ways that people can build and evaluate
systems. In particular, we attempt to identify the
overriding characteristics of space management, regardless
of window manager and display space configuration.
Furthermore, we presented some methods that attempt to
satisfy key findings from our study.

Display spaces will simultaneously become more complex
(by adding more monitors to single systems and increasing
the resolution achieved by each monitor), yet many systems
and “views onto remote systems” will remain in a small
display world. Because space management sits above all of
the interaction activities of users, it is a worthy endeavor to
continue to analyze how space is used and what

 10

possibilities can be developed to aid users’ tasks.
Moreover, as the application areas of computers continue to
broaden, we should continue to study people’s habits in
order to effective evaluate the possibilities. The windows
onto the world are unlikely to change, but current
interaction should continue to be refined and explored.

REFERENCES
Badros, G.J. et. al. SCWM: An intelligent constraint-enabled
window manager. In Proc. AAAI Spring Symposium on
Smart Graphics 2000 (Cambridge, MA), AAAI press,
76 – 83.

Beaudouin-Lafon, M. Novel interaction techniques for
overlapping windows. In Proc. UIST 2001 (Orlando, FL),
ACM press, 153 – 154.

Bell, B.A. and Feiner, S. Dynamic space management for
user interfaces. In Proc. UIST 2000 (San Diego, CA), ACM
Press, 239 – 248.

Bly, S. A. and Rosenberg, J. K. A comparison of tiled and
overlapping windows. In Proc. CHI 1986 (Boston, MA),
ACM Press, 101 – 106.

Funke, D. J. et. al. An approach to intelligent automated
window management. Int. J. of Man-Machine Studies 38,
(1993), 949 – 983.

Gaylin, K. How are windows used? Some notes on
creating empirically-based windowing benchmark task. In
Proc. CHI 1986 (Boston, MA), ACM Press, 96 – 100.

Grudin, J. Partitioning digital worlds: focal and peripheral
awareness in multiple monitor use. In Proc. CHI 2001
(Seattle, WA) ACM Press, 458 – 465.

Guimbretière, F. et. al. Fluid interaction with high-
resolution wall-size displays. In Proc. UIST 2001
(Orlando, FL), ACM Press, 21 – 30.

Henderson, D. A. Jr. and Card, S. K. Rooms: The use of
multiple virtual workspaces to reduce space contention in a
window-based graphical user interface. ACM Trans. on
Graphics 5, 3 (1986), 211 – 243.

Hubbinette, F. x2vnc.
http://www.hubbe.net/~hubbe/x2vnc.html

Kandogan, E. and Shneiderman, B. Elastic windows:
Evaluation of multi-window operations. In Proc. CHI
1997 (Atlanta, GA), ACM Press, 250 – 257.

Miah, T. and Alty, J. L. Vanishing windows: An empirical
study of Adaptive Window Management. In Proc.
Computer Aided Design of User Interfaces 1999 (Louvain-
la-Nueve, Belgium), Kluwer Academic Press, 171 – 184.

Nelson, L., Denoue, L., and Churchill, E. AttrActive
windows: Dynamic windows for digital bulletin boards. In
CHI Extended Abstracts 2003 (Ft. Lauderdale, FL), ACM
Press, 746 – 747.

Ringel, M. When one isn’t enough: an analysis of virtual

desktop usage strategies and their implications for design.
In CHI Extended Abstracts 2003 (Ft. Lauderdale, FL),
ACM Press, 762 – 763.

Robertson, G. et. al. The task gallery: a 3D window
manager. In Proc. CHI 2000 (The Hague, The
Netherlands), ACM Press, 494 – 501.

Rodden, T. et. al. Designing novel interactional
workspaces to support face to face consultations. In Proc.
CHI 2003 (Ft. Lauderdale, FL), ACM Press, 57 – 64.

Stille, S., and Ernst, R. Adaptive layout calculation to
handle the visual chaos in graphical user interfaces: A
retrospective on the A2DL-Project. In Proc. Computer
Aided Design of User Interfaces 1999 (Louvain-la-Nueve,
Belgium), Kluwer Academic Press.

VirtualPC. http://www.connectix.com.

VNC. http://www.uk.research.att.com/vnc.

