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Abstract. Let K be a finite extension of the p-adic numbers with p 6= 2, 5 and

L/K a ramified extension. We count the number of nonisomorphic extensions

where the Galois group of the splitting field of L is equal to one of the ten
transitive subgroups of S4 and S5.

1. Introduction

The study of p-adic numbers Qp and their extensions has been pursued for over
a century since the publication of Hensel’s venerable paper [Hen01]. Of particular
interest to number theorists is the following classical result [Lan94, Proposition
II.5.14].

Theorem 1.1. Let K be a finite extension of Qp and let n be any positive integer.
There exist only finitely many extensions of K of degree n.

This result motivates the obvious question: if there are only finitely many ex-
tensions, how many are there? In response, several authors have developed what
are known as “mass” formulas; formulas for the number of extensions of a local
field which count subfields of an algebraic closure. For example, Krasner [Kra66]
gives a formula for the number of totally ramified extensions of a local field of
specified degree. The main tool used is his well-known lemma. As another exam-
ple, Serre [Ser78] computes the number of extensions in two di↵erent ways, one
using Eisenstein polynomials, the other applying Weyl’s integration formula to the
multiplicative group of a division algebra.

More recently, several researchers have focused on counting the number of ex-
tensions of a local field with prescribed Galois group being of a certain form. For
example, Repka [Rep88] uses the norm to prove that every quartic extension of a
local field with odd residue characteristic has a quadratic subfield. An immediate
consequence is that A4 and S4 cannot occur as the Galois group of the normal
closure of such a field. It is therefore natural to ask for a formula that counts the
number of nonisomorphic tamely ramified quartic extensions of local fields whose
normal closures have Galois group either C4, V4, or D4.

One approach is to use local class field theory [Iwa55]. Another approach is
to combine knowledge of subfields with the structure of the Galois group. For
example, suppose L is a quartic extension of K/Qp with p > 2, and suppose
Gal(L/K) = V4. By Galois theory, L must contain three quadratic subfields. Since
p > 2, a consequence of Hensel’s lemma is that there are only three quadratic
extensions of K. Thus, the compositum of any two of these fields produces the
unique V4 extension of K. In the case that L/K is an octic Galois extension and
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K = Qp, Naito uses a similar approach to show there is a unique D4 extension
of Qp if p ⌘ 3 (mod 4) and none if p ⌘ 1 (mod 4) [Nai95]. Other authors have
studied tamely ramified Galois extensions of local fields when the Galois group is
Q8, S3, A4, and S4 ([Jen89], [Fuj90], [WJ07]).

In this paper, we o↵er a third approach to this problem, and we generalize the
setting to include non-Galois extensions. In particular, we compute the number
of tamely ramified degree four extensions of local fields where the Galois group of
the normal closure is either C4, V4, or D4. Our approach is unique in that we
obtain a defining polynomial for each extension and compute the Galois group of
this polynomial. Our techniques for computing Galois groups are of interest since
we use only one resolvent (the discriminant) along with mass and ramification
considerations. Taking this approach further, we show the same techniques can be
applied to totally and tamely ramified quintic extensions of local fields. In this case,
we count the number of nonisomorphic extensions where the Galois group of the
normal closure is a transitive subgroup of S5. Since Galois groups of local fields are
solvable, this leaves only the cases of C5, D5, and F5 = C5 o C4 [Ser79, Corollary
IV.2.5].

In section 2, we give a few important definitions and state our main theorems
concerning totally and tamely ramified quartic and quintic extensions of local fields.
In section 3, we formulate and prove several technical lemmas, describing how they
work together to yield proofs of our main theorems. In the final section, we prove
the theorems.

2. Statement of the Main Theorems

For the remainder of the paper, we fix a prime p 6= 2, 5, an algebraic closure
Qp of the p-adic numbers, and a finite extension K/Qp. Let e be the ramification
index of K and let f be its residue degree. Thus ef = [K : Qp].

Definition 2.1. We say K is of type hj,n,k+
,di if p ⌘ j (mod n) and f ⌘ k

(mod d). We say K is of type hj,n,k�
,di if p ⌘ j (mod n) and f 6⌘ k (mod d).

For a finite extension L/K, let L

gal denote its splitting field and m(L/K) its
mass. That is,

m(L/K) = [L : K]/|Aut(L/K)|,
where Aut(L/K) denotes the automorphism group.

Let Ln
K consist of representatives of the isomorphism classes of degree n exten-

sions of K. When p - n = e, Krasner’s mass formula [Kra66] gives
X

L2Ln
K

m(L/K) = n.

For totally and tamely ramified extensions of local fields, we compute their individ-
ual masses explicitly (Lemma 3.2), and use this information to determine Galois
groups. The determination of Galois groups is the key ingredient in the proofs of
our main results, Theorems 2.2 and 2.3.

Theorem 2.2. Let p > 2 be a prime number and K/Qp a finite extension.

(1) If K is of type h�1, 4, 0�, 2i, there are two nonisomorphic totally ramified
quartic extensions of K. In both cases, the Galois group of their splitting
fields is D4.
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Table 1. Invariant data for the possible Galois groups of tamely
ramified quintic extensions of local fields.

G Parity |CS5(G)|
C5 + 5
D5 + 1
F5 � 1

(2) Otherwise, there are four nonisomorphic totally ramified quartic extensions
of K; each of which is cyclic.

(3) Let K

0
/K be the unramified quadratic extension. There are two noniso-

morphic quartic extensions of L/K that contain K

0
/K such that L/K 0 is

totally ramified. One extension is cyclic. The other extension has Galois
group equal to V4.

Theorem 2.3. Let p 6= 2, 5 be a prime number and K/Qp a finite extension.

(1) There are five nonisomorphic totally ramified quintic extensions of K with
cyclic Galois group if one of the following conditions holds:
(a) p ⌘ 1 (mod 5)
(b) K is of type h�1, 5, 0+, 2i
(c) K is of type h±2, 5, 0+, 4i

(2) There is a unique totally ramified quintic extension of K whose normal
closure has Galois group D5 if one of the following conditions holds:
(a) K is of type h�1, 5, 0�, 2i
(b) K is of type h±2, 5, 0�, 4i and Qp(

p
5) ⇢ K.

(3) There is a unique totally ramified quintic extension of K whose normal

closure has Galois group F5 if K is of type h±2, 5, 0�, 4i and Qp(
p
5) 6⇢ K.

3. Some Lemmas

In this section, we formulate several technical lemmas and describe how they
fit together to yield our main theorems. First, we focus on the invariants that
distinguish between the possible Galois groups for quartic and quintic extensions
of local fields. One invariant is the parity of the group. To illustrate this invariant,
suppose L/K is a finite extension with n = [L : K], and let G be the Galois group
of Lgal

/K. The parity of G is + if G ⇢ An and � otherwise. It corresponds to
whether or not the discriminant of L/K is a square in K.

Another invariant we use is the order of the centralizer of G in Sn. This quan-
tity is useful for computing Galois groups since it corresponds to the size of the
automorphism group of L/K. It turns out that the parity and centralizer order are
enough to distinguish between C5, D5, and F5 (Table 1).

For quartic extensions we use one more invariant, which we refer to as the qua-
dratic subfield discriminant product (qsd). Suppose the extension L/K has a unique
quadratic subfield K

0, and let G be the Galois group of Lgal
/K, as before. We

write qsd(G) = + if disc(L/K) · disc(K 0
/K) is a square in K; otherwise we write

qsd(G) = �. The qsd product is useful for distinguishing between C4 and D4, as
the following lemma shows.
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Table 2. Invariant data for the possible Galois groups of tamely
ramified quartic extensions of local fields.

G Parity |CS4(G)| qsd(G)
C4 � 4 +
V4 + 4
D4 � 2 �

Lemma 3.1. Let L/K be a quartic extension and suppose G = Gal(Lgal
/K) is

either C4 or D4. Then L/K has a unique quadratic subfield, up to isomorphism.
Moreover, qsd(G) = + if and only if G = C4.

Proof. If G = C4, then L/K has a unique quadratic subfield by the fundamental
theorem of Galois theory. Suppose G = D4 and let E ⇢ G be the subgroup which
fixes L. The nonisomorphic subfields of L/K correspond to conjugacy classes of
intermediate subgroups F such that E  F  G. Direct computation shows the
group D4 has one such intermediate subgroup of index two, proving that L/K has
a unique quadratic subfield up to isomorphism. A well-known result on quartic
Galois groups shows that qsd(C4) = + while qsd(D4) = � [KW89]. ⇤

For each of the possible Galois groups of tamely ramified quartic extensions of
local fields, Table 2 shows the parity and the order of the centralizer in S4. For C4

and D4, the table also shows the qsd product.
Our remaining lemmas describe how to compute the mass and centralizer order

invariants on the field-theoretic side. The first is a restatement of [PR01, Theorem
7.2] in our context.

Lemma 3.2. Let K/Qp be a finite extension and let n be an integer with p - n.
Let g = gcd(pf � 1, n) and let m = n/g.

(a) There are g nonisomorphic totally ramified extensions of K of degree n;
each with mass m.

(b) Let ⇣ be a primitive (pf � 1)-st root of unity and let ⇡ be a uniformizer
for K. Each totally and tamely ramified extension of K of degree n is
isomorphic to an extension that is generated by a root of the polynomial
x

n + ⇣

r
⇡, for some 0  r < g.

Lemma 3.3. Let L/K be a totally ramified extension of degree n with p - n and
let g = gcd(pf � 1, n). Let G = Gal(Lgal

/K). Then

g = |CSn(G)|.

Proof. From Galois theory, we know the automorphism group of L/K is isomorphic
to the centralizer of G in Sn. Thus the size of Aut(L/K) is equal to the order of
CSn(G). Using this fact and the definition of the mass of L/K, we have

[L : K] = m(L/K) · |Aut(L/K)| = m(L/K) · |CSn(G)|.

By Lemma 3.2, we also have

[L : K] = m(L/K) · g.

These two equalities combine to prove the lemma. ⇤
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4. Proof of Theorems

4.1. Proof of Theorem 2.2.

Proof. We know the Galois group G = Gal(Lgal
/K) must be either C4, V4, or D4.

First, we consider the case when L/K is totally ramified. Let g = gcd(pf � 1, 4).
Since p is odd, g is 2 or 4. Furthermore, g = 2 if and only if p ⌘ �1 (mod 4) and
f is odd if and only if K is of type h�1, 4, 0�, 2i. Otherwise, we must have g = 4.
Since g = |CS4(G)|, we see that G = D4 if and only if g = 2 if and only if K is
of type h�1, 4, 0�, 2i; proving part (1). If g = 4, then G is either C4 or V4. Since
V4 ⇢ A4 and C4 is not, we see that G is determined by the discriminant of L/K.
By Lemma 3.2, the four totally ramified quartic extensions of K are generated by
the polynomials x4+ ⇣

r
⇡ where ⇣ is a primitive (pf �1)-st root of unity, 0  r < 4,

and ⇡ is a uniformizer for K. Now, since each extension is totally ramified, the
field discriminant and the polynomial discriminant are equal. Thus

disc(L/K) = disc(x4 + ⇣

r
⇡) = 256⇣3r⇡3

,

which is clearly not a square in K. Thus G = C4 for all four of these extensions;
proving part (2).

Suppose now that L/K contains the unramified quadratic subfield K

0. Since
p > 2, L/K

0 is a totally and tamely ramified quadratic extension. By Lemma
3.2, there are two such extensions, generated by x

2 � ⇡ and x

2 � ↵⇡, where ↵ is
a primitive (p2f � 1)-st root of unity and ⇡ is a uniformizer for K. We note that
K

0
/K is generated by a root of x2 �NK0/K(↵) where NK0/K represents the norm

from K

0 down to K. Let L1 = K

0(
p
⇡)/K and let L2 = K

0(
p
↵⇡)/K. Working up

to multiplication by a square, the formula for the discriminant in towers gives

disc(L1/K) = NK0/K(disc(L/K 0)).

Since L/K

0 is generated by the Eisenstein polynomial x2 � ⇡, its field discriminant
and polynomial discriminant are both equal to 4⇡. Since K

0
/K is quadratic and

unramified, we have

disc(L1/K) = NK0/K(disc(x2 � ⇡)) = NK0/K(4⇡) = 42⇡2
,

which is a square in K. This proves the Galois group of L1/K is V4.
Similarly, we have

disc(L2/K) = NK0/K(disc(x2 � ↵⇡)) = NK0/K(4↵⇡) = 42⇡2
NK0/K(↵),

which is not a square in K since NK0/K(↵) is not. This implies that the Galois
group of L

gal
/K is either C4 or D4. By Lemma 3.1, we see that C4 and D4

are distinguished by their qsd product. Since each of these extensions has a unique
quadratic subfield up to isomorphism, we know this subfield must be the unramified
subfield, whose discriminant is 4NK0/K(↵). Therefore, we have

disc(L2/K) · disc(K 0
/K) = 42⇡2

NK0/K(↵) · 4NK0/K(↵) = 64⇡2
NK0/K(↵)2,

which is a square in K. This proves the Galois group of L2/K is C4. ⇤
4.2. Proof of Theorem 2.3.

Proof. We know G must be either C5, D5, or F5 = C5oC4. Let g = gcd(pf �1, 5).
Thus g is either 1 or 5. Furthermore, g = 5 if and only if pf ⌘ 1 (mod 5), which
occurs if either (a) p ⌘ 1 (mod 5), (b) K is of type h�1, 5, 0+, 2i, or (c) K is of
type h±2, 5, 0+, 4i. Since g = |CS5(G)|, we see that G = C5 if and only if one the
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conditions (a), (b), or (c) occurs; proving part (1). If g = 1, then G is either D5 or
F5, depending on whether disc(L/K) is a square or not, respectively.

Suppose now g = 1 and that none of (a), (b), and (c) hold. By Lemma 3.2,
the unique totally ramified quintic extension L/K is generated by a root of the
polynomial x5 � ⇡ where ⇡ is a uniformizer for K. Since L/K is totally ramified,
we have

disc(L/K) = disc(x5 � ⇡) = 55⇡4
,

which is a square inK if and only if 5 is. Certainly 5 is a square inK ifQp(
p
5) ⇢ K.

SupposeQp(
p
5) 6⇢ K, and consider the polynomial f(x) = x

2�5. Since p 6= 2, 5,
Hensel’s lemma and quadratic reciprocity show that f has a root in K if and only
if p ⌘ ±1 (mod 5). Since we are supposing that (a) and (b) do not hold, it follows
that 5 is a square in K if and only if p ⌘ �1 (mod 5) and f is odd or Qp(

p
5) ⇢ K.

This proves parts (2) and (3). ⇤
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