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Abstract. Let n be an integer and p a prime number. An important problem
in number theory is to classify the degree n extensions of the p-adic numbers

through their arithmetic invariants. The most di�cult cases arise when p
divides n and n is composite. In this paper, we consider the case n = 12 and
p = 3; the degrees n < 12 having previously been determined.

1. Introduction

First introduced by Hensel near the end of the 19th century, the p-adic num-
bers Qp have become an essential tool in many areas of mathematics as well as
mathematical physics. Of particular interest to number theorists is the connec-
tion between the p-adic numbers, the rational numbers, and their respective field
extensions of finite degree. Specifically, let K/Q be a finite extension defined by
adjoining to Q a root of the polynomial f(x) 2 Q[x]. Then for each prime number
p, we can factor f over Qp to obtain

K ⌦Qp '
mY

j=1

Kj

where each Kj is a finite extension of Qp defined by the corresponding irreducible
factor of f .

To study the number field K, we are led to the problem of determining the arith-
metic invariants of the polynomials defining the fields Kj ; the most important of
which are the discriminant, ramification index, residue degree, polynomials defining
subfields, and Galois group. If Kj is unramified, tamely ramified, or a degree p ex-
tension of Qp, then the situation is well-understood [7], [1]. For degree n extensions
of Qp where p | n and n is composite, the situation is more complicated.

Suppose we have an irreducible monic polynomial of degree n with integer coef-
ficients defining the extension K/Q. To compute the arithmetic invariants of the
p-adic fields Kj , Jones and Roberts propose the following [9]:

(1) Classify the degree m extensions of Qp for all m | n and store the invariants.
(2) Factor the polynomial over the p-adic numbers.
(3) Use Panayi’s p-adic root finding algorithm [13] on each irreducible factor

to identify an isomorphic representative.

Item (1) is clearly the most interesting and the most di�cult. The work done by
Jones and Roberts classifies degree n extensions of Qp where p | n and n  10
is composite. Their approach for n = 4, 6, and 10 is described in [9], while the
di�cult cases of (n, p) = {(8, 2), (9, 3)} are described in [10] and [8], respectively.
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In this paper, we are concerned with item (1) when n = 12 and p = 3. In
particular, we focus on computing defining polynomials for each field as well as
the Galois group (over Qp) for each of these polynomials. The other invariants are
straightforward to compute using basic number field commands in [14] and Panayi’s
algorithm. In section 2, we lay the theoretical groundwork for computing Galois
groups of p-adic fields using the notion of ramification group. A consequence of
this section is that every degree 12 extension of Q3 has a unique quartic subfield.
In section 3, we use the result of section 2 to compute defining polynomials. In
the final section, we discuss our method of determining the Galois groups of the
polynomials found in section 3.

2. Ramification Groups

The aim of this section is to introduce the basic properties of ramification groups
and use those to deduce structural information about degree 12 extensions of Q3.
A more detailed exposition can be found in [16].

Definition 2.1. Let L/Qp be a Galois extension with Galois group G. Let v be
the discrete valuation on L and let ZL denote the corresponding discrete valuation
ring. For an integer i � �1, we define the i-th ramification group of G to be
the following set

Gi = {� 2 G : v(�(x)� x) � i+ 1 for all x 2 ZL}
The ramification groups define a sequence of decreasing normal sugroups which

are eventually trivial and which give structural information about the Galois group
of a p-adic field.

Lemma 2.2. Let L/Qp be a Galois extension with Galois group G, and let Gi

denote the i-th ramification group. Let p denote the unique maximal ideal of ZL

and U0 the units in L. For i � 1, let Ui = 1 + pi.

(a) For i � 0, Gi/Gi+1 is isomorphic to a subgroup of Ui/Ui+1.

(b) The group G0/G1 is cyclic and isomorphic to a subgroup of the group of

roots of unity in the residue field of L. Its order is prime to p.

(c) The quotients Gi/Gi+1 for i � 1 are abelian groups and are direct products

of cyclic groups of order p. The group G1 is a p-group.

(d) The group G0 is the semi-direct product of a cyclic group of order prime to

p with a normal subgroup whose order is a power of p.

(e) The groups G0 and G are both solvable.

Proof. We note that U0/U1 is isomorphic to the multiplicative group of the residue
field of L. For i � 1, Ui/Ui+1 is isomorphic to the additive group of the residue
field. Let ⇡ be a uniformizer for L. Part (a) follows from considering the map
f : Gi/Gi+1 ! Ui/Ui+1 defined by f(�) = �(⇡)/⇡. It follows that f is an injective
homomorphism, independent of choice of uniformizer. Part (b) follows from part
(a). Since every subgroup of the residue field is a vector space over Z/p, every
subgroup of Ui/Ui+1 is a direct sum of cyclic groups of order p. That G1 is a
p-group follows since

|G1| =
1Y

i=1

|Gi/Gi+1|,

which proves part (c). Since G0 and G1 have relatively prime order, there exists a
subgroup of G0 that projects isomorphically onto G0/G1 ([5, p.230]), proving part
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(d). Since G/G0 is isomorphic to the Galois group of the residue field, it is cyclic.
Part (e) follows from general results on solvability. ⇤

Specializing to the case when [K : Q3] = 12 and G = Gal(Kgal
/Q3), we see that

G is a solvable transitive subgroup of S12; of which there are 265 [15]. Furthermore,
G contains a solvable normal subgroup G0 such that G/G0 is cyclic of order dividing
12. The group G0 contains a normal subgroup G1 such that G1 is a 3-group
(possibly trivial). Moreover, G0/G1 is cyclic of order dividing 3[G:G0] � 1. Direct
computation on the 265 candidates shows that only 45 are possible Galois groups
of dodecic 3-adic fields. Using the transitive group notation in [4], these groups are
TransitiveGroup(12,n), where n is one of the following possibilities:

1, 2, 3, 5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 34, 35, 36, 38, 39, 40,
41, 42, 46, 47, 70, 71, 72, 73, 84, 116, 118, 119, 120, 121, 130, 131,
167, 169, 170, 171, 172, 173, 174, 212, 215, 216

Showing that every degree 12 extension ofQ3 has a unique quartic subfield amounts
to showing that each of the above 45 groups possesses the corresponding group-
theoretic property. In particular, consider the subfields ofK/Q3 up to isomorphism.
The list of the Galois groups of the Galois closures of the proper nontrivial subfields
of K is important for our work. We call this the subfield Galois group content of
K, and we denote it by sgg(K).

The sgg content of an extension is an invariant of its Galois group. Indeed,
suppose the normal closure of K/Q3 has Galois group G and let E = G \ S11.
Then E is the subgroup fixing Q3(↵) where ↵ is a primitive element for K. By the
fundamental theorem of Galois theory, the nonisomorphic subfields of Q3(↵)/Q3

correspond to the intermediate subgroups F , up to conjugation, such that E  F 
G. Specifically, if K 0 is a subfield and F is its corresponding intermediate group,
then the Galois group of the normal closure of K

0 is equal to the permutation
representation of G acting on the cosets of F in G. Consequently, it makes sense
to speak of the sgg content of a transitive subgroup as well.

For each of the 45 possible Galois groups of degree 12 extensions of Q3, Tables 3-
8 show their respective sgg contents. Notice that each group has exactly one entry
of the form 4Tj [2]. This shows that degree 12 extensions of Q3 have a unique
quartic subfield.

3. Defining Polynomials

As a consequence of Section 2, every degree 12 extension of Q3 can be realized
uniquely as a cubic extension of a quartic 3-adic field. Defining polynomials for
dodecic 3-adic fields can therefore be computed by evaluating appropriate resultants
[3, p.119].

3.1. Quartic 3-adic Fields. Degree four extensions of Q3 are necessarily tamely
ramified, and are therefore easily classified. In particular, each such extension is
a totally and tamely ramified extension of an unramified extension of Q3. The
unique unramified extension is obtained by extending the residue field [12, p.48].
For totally and tamely ramified extensions of unramified p-adic fields, we use the
following well-known result [12, p.52].

Proposition 3.1. Let K/Qp be the unramified extension of degree f and let ⇣

be a primitive (pf � 1)-st root of unity in K. For an integer e with p - e, let
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Table 1. Quartic Extensions of Q3

e f poly
1 4 q1 = x

4 � x+ 2
2 2 q2 = x

4 + 9x2 + 36
2 2 q3 = x

4 � 3x2 + 18
4 1 q4 = x

4 + 3
4 1 q5 = x

4 � 3

g = gcd(e, pf � 1). There are exactly g totally and tamely ramified extensions of K

of degree e, up to K-isomorphism. All extensions can be generated over K by the

roots of the polynomial

x

e � ⇣

r
p

where r 2 {0, . . . , g � 1}.

Corollary 3.2. There are five quartic 3-adic fields, up to isomorphism; the un-

ramified extension, two totally ramified extensions, and two with ramification index

2. Moreover, defining polynomials for these extensions can be chosen to be those

given in Table 1.

Proof. The only non-obvious statement is the fact that the norms of the polynomials
defining the two totally ramified extensions of the unramified quadratic 3-adic field
give two non-isomorphic extensions. To see this, let K be the unramified quadratic
extension of Q3. By Proposition 3.1, there are two totally and tamely ramified
quadratic extensions of K, generated by x

2 � 3 and x

2 � 3↵, where ↵ is a primitive
8th root of unity. We note that K/Q3 is generated by a root of x2�N(↵) where N
represents the norm down to Q3. Let L1/K be defined by the polynomial N(x2�3)
and let L2/K be defined by N(x2�3↵). Working up to multiplication by a square,
the formula for the discriminant in towers gives

disc(L1/K) = disc(N(x2 � 3)) = N(disc(x2 � 3)) = N(12) = 144,

which is a square in K. Similarly, we have

disc(L2/K) = disc(N(x2 � 3↵)) = N(disc(x2 � 3↵)) = N(12↵) = 144 ·N(↵),

which is not a square in K since N(↵) is not. Thus, L1/Q3 and L2/Q3 define
non-isomorphic quartic extensions. ⇤

3.2. Amano Polynomials. In [1], Amano studies totally ramified degree-p exten-
sions of p-adic fields where p is an odd prime. He gives generating polynomials
for all such extensions. In this section, we apply Amano’s results to our setting to
compute the cubic extensions of the quartic 3-adic fields.

Let K be a quartic 3-adic field. Let ⇡ be a uniformizer for K, let e, f denote the
ramification index and residue field degree, let p be the prime ideal of ZK , and let
v be the corresponding valuation. Thus v(p) = 1. The polynomials obtained using
Amano’s method define totally ramified cubic extensions of K and are consequently
Eisenstein. They are therefore of the following form,

f(x) = x

3 + a2x
2 + a1x+ a0⇡

where v(a0) = 0 and v(ai) > 0 for i = 1, 2. If L is a cubic extension of K, we define
the type of L as follows:
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• In the case where m = min(v(a1), v(a2))  e, let � denote the least integer
such that v(a�) = m and let ! 6= 0 in ZK/p be such that a� ⌘ !⇡

m. In
this case we say that L is of type < �,m,! >.

• In the case where v(ai) > e for i = 1, 2. Let � = 0 and m = e+ 1. In this
case we say that L is of type < 0 >.

We define M(�,m) to be the set of one units in K of the form

1 +
X

i

ai⇡
i

where each ai is chosen from a complete set of representatives of ZK/p and where
the summation is taken over all integers i such that

1  i  m� 1 +

�
m+ �+ 1

2

⌫
and i 6= �� (mod 3)

The following result [1] completely characterizes the cubic extensions of K.

Theorem 3.3 (Amano). Each extension L of type < 0 > is given by a polynomial

of the form

x

3 � a⇡

where a 2 K

⇤
/K

⇤3
. Thus there is a one-to-one correspondence between the set

K

⇤
/K

⇤3
and cubic extensions of K of type < 0 >.

For integers �,m such that

1  �  2 1  m  e

and ! 6= 0 2 K/p, each extension L of type < �,m,! > is given by a polynomial

of the form

x

3 � !⇡

m
x

� � a⇡

where a 2 M(�,m). Thus there is a one-to-one correspondence between the set

M(�,m) and the cubic extensions of K of type < �,m,! >.

3.3. Data Tables. For each quartic extension of Q3, we compute all cubic exten-
sions using Theorem 3.3. Taking the norms of these polynomials down to Q3, we
produce a list of degree 12 polynomials. If at any time we obtain a non-separable
polynomial, we apply a suitable Tschirnhausen transformation [3, p.324]. Using
Panayi’s algorithm, we discard isomorphic extensions. Table 2 contains numerical
data on the numbers of these extensions. The Base column references polynomials
in Table 1. The column c is the discriminant exponent,

P
m(K) is the total mass

as in [11], and #Q12
3 is the number of non-isomorphic extensions over Q3.

Using this approach, we found 785 degree 12 extensions of Q3; 780 correspond
to totally ramified extensions of the five quartic 3-adic fields and 5 correspond to
the unramified extensions of these fields. Krasner’s mass formula [11] proves that
these are all such extensions.

4. Galois Groups

It remains to identify the Galois group over Q3 for each of the 785 polynomials.
We follow the standard approach for determining Galois groups [6]. We compute
enough group-theoretic and field-theoretic invariants so as to uniquely identify a
polynomial with its corresponding Galois group. Our strategy is to divide the
above list of 45 groups into smaller pieces that are easily distinguished from each
other. Our first division will be at the level of centralizer order. The order of
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Table 2. Ramified Cubic Extensions of Quartic 3-adic Fields

Base c
P

m(K) #Q12
3

q1 12 240 23
q1 16 240 46
q1 20 243 24
q2 12 24 3
q2 14 24 8
q2 18 216 46
q2 20 216 21
q2 22 243 72
q3 12 24 2
q3 14 24 7
q3 18 216 42
q3 20 216 18
q3 22 243 24

Base c
P

m(K) #Q12
3

q4 12 6 1
q4 13 6 3
q4 15 18 8
q4 16 18 3
q4 18 54 9
q4 19 54 24
q4 21 162 57
q4 22 162 27
q4 23 243 135
q5 12 6 1
q5 13 6 3
q5 15 18 8
q5 16 18 3
q5 18 54 9
q5 19 54 24
q5 21 162 57
q5 22 162 27
q5 23 243 45

the centralizer in S12 of the Galois group is useful as it corresponds to the size of
the automorphism group of the stem field defined by the polynomial. We divide
these smaller sets even further based on their sgg content and their parity. The
parity of a group G is +1 if G ✓ A12 and �1 otherwise. Likewise, the parity of a
polynomial f is +1 if its discriminant is a square in Q3 and �1 otherwise. When
this information is not enough, we introduce various resolvent polynomials [18], [3,
p.322] and use information about how these resolvents factor. For each scenario, we
provide summary tables. As before, we include the column #Q12

3 , which represents
the number of non-isomorphic extensions over Q3 with the corresponding Galois
group.

4.1. Centralizer Order 4, 6, and 12. Only four of the above 45 groups have
centralizer order equal to twelve: 12T1, 12T2, 12T3, 12T5. Eight groups have
centralizer order equal to six: 12T14, 12T15, 12T16, 12T17, 12T18, 12T19, 12T35,
and 12T42. There is a unique group that has centralizer order equal to four: 12T11.
In each of these three cases, the sgg content is enough to distinguish between the
Galois groups (Table 3).

4.2. Centralizer Order Equals 3. There are nine groups which have centralizer
order equal to three: 12T70, 12T71, 12T72, 12T73, 12T116, 12T121, 12T130,
12T131, 12T167. In this case, sgg content is not enough to determine Galois
groups. Additionally, we use a degree 66 absolute resolvent f66(x) corresponding
to the group S10 ⇥ S2. We note that this polynomial can be computed as a linear
resolvent on 2-sets [17], i.e. as a resultant. In particular, let

g(x) = Resultanty(f(y), f(x+ y))/x12
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Table 3. Galois groups with |CS12(G)| = 4, 6, or 12. These
groups are distinguished by their sgg content.

T |CS12(G) sgg #Q12
3

1 12 2T1, 3T1, 4T1, 6T1 8
2 12 2T1, 2T1, 2T1, 3T1, 4T2, 6T1, 6T1, 6T1 4
3 12 2T1, 2T1, 2T1, 3T2, 4T2, 6T2, 6T3, 6T3 6
5 12 2T1, 3T2, 4T1, 6T2 2

11 4 2T1, 3T2, 4T1, 6T3 10

14 6 2T1, 3T1, 4T3, 6T1 8
15 6 2T1, 3T2, 4T3, 6T2 5
16 6 2T1, 2T1, 2T1, 4T2, 6T9 9
17 6 2T1, 4T1, 6T10 4
18 6 2T1, 2T1, 2T1, 4T2, 6T5 24
19 6 2T1, 4T1, 6T5 8
35 6 2T1, 4T3, 6T13 8
42 6 2T1, 4T3, 6T5 40

Table 4. Galois groups G with |CS12(G)| = 3. These groups
are distinguished by sgg content and knowledge of certain cubic
subfields of the absolute resolvent corresponding to the group S10⇥
S2.

T sgg f66 Cubic Subs #Q12
3

70 2T1, 2T1, 2T1, 4T2 [12,18,18,18] 3T1, 3T2, 3T2 36
71 2T1, 2T1, 2T1, 4T2 [12,18,18,18] 3T2, 3T2, 3T2 4
130 2T1, 2T1, 2T1, 4T2 [12,18,18,18] none 32

72 2T1, 4T1 [12,18,36] 3T2 4
73 2T1, 4T1 [12,18,36] 3T1 16
131 2T1, 4T1 [12,18,36] none 32

116 2T1, 4T3 [12,18,36] 3T2 20
121 2T1, 4T3 [12,18,36] 3T1 32
167 2T1, 4T3 [12,18,36] none 160

Then f66(x) = g(
p
x). Factoring this polynomial over Q3, we obtain at least one

degree 18 factor and at most three degree 18 factors. The Galois groups of the
normal closures of the cubic subfields of the fields defined by the degree 18 factors
distinguish between these nine groups. See column Cubic Subs in Table 4. The
column f66 gives the degrees of the irreducible factors of f66.

4.3. Centralizer Order Equals 2. There are eight groups which have centralizer
order equal to 2: 12T12, 12T13, 12T34, 12T36, 12T38, 12T39, 12T40, 12T41. In
this case all but the groups 12T12 and 12T13 can be distinguished by their subfield
content. For these two groups, we make use of the fact that each has a unique
cubic and quartic subfield, according to their sgg content. For the group 12T12,
the discriminant of the cubic subfield times the discriminant of the quartic subfield
is a not a square. For the group 12T13, this quantity is a square. See column
d3 · d4 = ⇤ in Table 5.
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Table 5. Galois groups G with |CS12(G)| = 2. These groups
are distinguished by sgg content with the exception of two groups.
These groups are distinguished by the product of the discriminants
of their cubic and quartic subfields.

T sgg d3 · d4 = ⇤ #Q12
3

12 2T1, 3T2, 4T3, 6T3 no 2
13 2T1, 3T2, 4T3, 6T3 yes 5

34 2T1, 2T1, 2T1, 4T2, 6T13 8
36 2T1, 4T3, 6T13 8
38 2T1, 4T3, 6T9 10
39 2T1, 4T1, 6T9 8
40 2T1, 2T1, 2T1, 4T2, 6T10 4
41 2T1, 4T1, 6T10 4

4.4. Centralizer Order Equals 1. There are 15 groups which have centralizer
order equal to 1: 12T46, 12T47, 12T84, 12T118, 12T119, 12T120, 12T169, 12T170,
12T171, 12T172, 12T173, 12T174, 12T212, 12T215, 12T216. The sgg contents of
these groups either have size two or size four. We first divide the 15 candidates
into three sets: those with sgg content of size 2 which are subgroups of A12 (Table
6), those with sgg content of size 2 which are not subgroups of A12 (Table 7), and
those with sgg content of size 4 (Table 8).

The groups in the first set are: 12T46, 12T84, 12T173, 12T212, 12T215, 12T216.
They are subgroups of A12 and have sgg content equal to either {2T1, 4T1} or
{2T1, 4T3}. To distinguish between these groups, we use the sgg content and
two resolvents. One is a degree 220 absolute resolvent f220(x) corresponding to
the group S9 ⇥ S3. It can be computed in a manner similar to f66(x), i.e., using
resultants. It can also be computed in the following way. Let f(x) define a degree
12 extension over Q3, and let r1, r2, . . . , r12 be the roots of f . Then,

f220(x) =
10Y

i=1

11Y

j=i+1

12Y

k=j+1

(x� ri � rj � rk)

The other resolvent we use is a degree 8 relative resolvent f8(x) that makes use
of the unique quartic subfield. To compute this resolvent, let f define a degree 12
extension F/Q3 and let K be the unique quartic subfield of F . Let g be a cubic
polynomial obtained by factoring f over K. Then f8(x) is equal to the norm of
x

2 � disc(g(x)) down to Q3. We make use of the Galois group of f8(x), which is
easy to compute since the polynomial defines a tamely ramified extension of Q3 [7],
[9]. See column f8 in Table 6. The column f220 gives the degrees of the irreducible
factors of f220.

The groups in the second set are: 12T118, 12T119, 12T120, 12T169, 12T170.
They are not subgroups of A12 and have sgg content equal to either {2T1, 4T1}
or {2T1, 4T3}. To distinguish between these groups, we use sgg content and the
absolute resolvent f66 introduced earlier. Factoring f66 over Q3, we obtain three
factors of degrees 12, 18, and 36, respectively. The Galois groups of the normal
closures of the sextic subfields of the field defined by the degree 18 factor of f66
are useful for distinguishing between these five groups. See column Sextic Subs
in Table 7. The column f66 gives the degrees of the irreducible factors of f66.
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Table 6. Galois groups G with |CS12(G)| = 1, G ✓ A12, and
|sgg(G)| = 2. These groups are distinguished by their sgg content,
by the degrees of the irreducible factors of an absolute resolvent
corresponding to S3 ⇥ S9, and by the Galois group of the norm of
the discriminant polynomial over the unique quartic subfield.

T sgg f220 f8 #Q12
3

46 2T1, 4T1 [4,36,36,36,36,72] 8T1 4
173 2T1, 4T1 [4,36,36,36,108] 8T1 16
215 2T1, 4T1 [4,36,36,36,108] 8T7 20

84 2T1, 4T3 [4,36,36,72,72] 8T8 16
212 2T1, 4T3 [4,36,72,108] 8T8 48
216 2T1, 4T3 [4,36,72,108] 8T6 16

Table 7. Galois groups G with |CS12(G)| = 1, G * A12, and
|sgg(G)| = 2. These groups are distinguished by their sgg con-
tent and by knowledge of certain sextic subfields of the absolute
resolvent corresponding to the group S10 ⇥ S2.

T sgg f66 Sextic Subs #Q12
3

118 2T1, 4T3 [12,18,36] 6T3 8
120 2T1, 4T3 [12,18,36] 6T13 20
169 2T1, 4T3 [12,18,36] 6T9 40

119 2T1, 4T1 [12,18,36] 6T3 20
170 2T1, 4T1 [12,18,36] 6T9 32

Computing the Galois group of a sextic 3-adic polynomial is described in detail in
[9].

The groups in the third and final set are: 12T47, 12T171, 12T172, 12T173.
They are subgroups of A12 and have sgg content equal to {2T1, 2T1, 2T1, 4T2}.
To distinguish between these groups, we use the two absolute resolvents from before,
f66 and f220. Factoring f66 over Q3, we obtain four factors of degrees 12, 18, 18,
and 18, respectively. The Galois groups of the normal closures of the sextic subfields
of the fields defined by the degree 18 factors of f66 uniquely determine the groups
12T171 and 12T172. See column Sextic Subs in Table 8. To distinguish between
12T47 and 12T174, we use the list of degrees of the irreducible factors f220.
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