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Abstract. We study the 590 nonisomorphic degree 14 extensions of the 2-
adic numbers by computing defining polynomials for each extesnsion as well
as basic invariant data for each polynomial, including the ramification index,
residue degree, discriminant exponent, and Galois group. Our study of the Ga-
lois groups of these extensions shows that only 10 of the 63 transitive subgroups
of S14 occur as a Galois group. We end by describing our implementation for
computing Galois groups in this setting, which is of interest since it uses sub-
field information, the discriminant, and only one other resolvent polynomial.

1. Introduction

Hensel’s p-adic numbers are a foundational tool in 21st century number theory,
with applications to such areas as number fields, elliptic curves, and representa-
tion theory (among others). They are also the subject of much current research
themselves, with several studies aimed at classifying arithmetic invariants of finite
extensions of the p-adic numbers. Among the most useful invariants to identify
are the ramification index, residue degree, discriminant, and Galois group (of the
normal closure) of each extension. For such a pursuit, we can take the following
classical result as motivation [13, p. 54].

Theorem 1.1. For a fixed prime number p and positive integer n, there are only

finitely many nonisomorphic extensions of the p-adic numbers of degree n.

When p - n, then all extensions are tamely ramified and are well understood
[10]. Likewise, when p = n the situation has been solved since the early 1970s
[1, 10]. The di�cult cases where p | n and n is composite have been dealt with on
a case-by-case basis for low-degrees n and small primes p. Jones and Roberts have
classified the cases where n  10 [9, 10, 11], and the first author has worked on
degree 12 [3, 4, 5, 6].

In this paper, we are concerned with classifying degree 14 extensions of the 2-adic
numbers. In particular, we focus on computing defining polynomials for each field
as well as the Galois group for each of these polynomials. The other invariants are
straightforward to compute using basic number field commands in [19]. In section
2, we lay the theoretical groundwork for computing Galois groups of p-adic fields
using the theory of ramification groups. A consequence of this section is that every
degree 14 extension of Q2 has a unique septic subfield. In section 3, we use the
result of section 2 to compute defining polynomials. In the final section, we discuss
our method of determining the Galois groups of the polynomials found in section
3.
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2. Ramification Groups

The aim of this section is to show that every degree 14 2-adic field has a unique
septic subfield. We accomplish this by introducing the basic properties of ramifi-
cation groups, and we use those properties to deduce structural information about
degree 14 extensions of Q2. A more detailed exposition of ramification group theory
can be found in [16].

Definition 2.1. Let L/Qp be a Galois extension with Galois group G. Let v be
the discrete valuation on L and let ZL denote the corresponding discrete valuation
ring. For an integer i � �1, we define the i-th ramification group of G to be
the following set

Gi = {� 2 G : v(�(x)� x) � i+ 1 for all x 2 ZL}

The ramification groups define a sequence of decreasing normal sugroups which
are eventually trivial and which give structural information about the Galois group
of a p-adic field. For example, the following result is useful for determining possible
Galois groups of p-adic fields. A proof can be found in [16, Ch. 4].

Lemma 2.2. Let L/Qp be a Galois extension with Galois group G, and let Gi

denote the i-th ramification group. Let p denote the unique maximal ideal of ZL

and U0 the units in L. For i � 1, let Ui = 1 + pi.

(a) For i � 0, Gi/Gi+1 is isomorphic to a subgroup of Ui/Ui+1.

(b) The group G0/G1 is cyclic and isomorphic to a subgroup of the group of

roots of unity in the residue field of L. Its order is prime to p.

(c) The quotients Gi/Gi+1 for i � 1 are abelian groups and are direct products

of cyclic groups of order p. The group G1 is a p-group.

(d) The group G0 is the semi-direct product of a cyclic group of order prime to

p with a normal subgroup whose order is a power of p.

(e) The groups G0 and G are both solvable.

Suppose f is an irreducible polynomial of degree 14 defined over Q2 and let G be
its Galois group. From Lemma 2.2, we see that G is a solvable transitive subgroup
of S14. Furthermore, G contains a solvable normal subgroup G0 such that G/G0

is cyclic. The group G0 contains a normal subgroup G1 such that G1 is a 2-group
(possibly trivial). Moreover, G0/G1 is cyclic of order dividing 2[G:G0] � 1. Direct
computation on the 63 transitive subgroups of S14 (using [7] for example) shows
that only 15 of the 63 are possibilities for the Galois group of f . Using the transitive
group notation in [7], these 15 groups are TransitiveGroup(14,n), where n is one
of the following possibilities:

{1, 4, 5, 6, 7, 9, 11, 18, 21, 29, 35, 40, 41, 44, 48}.
Showing that every degree 14 extension of Q2 has a unique septic subfield amounts
to showing that each of the above 15 groups possesses the corresponding group-
theoretic property. In particular, let K/Q2 be a degree 14 extension defined by an
irreducible polynomial f , and consider the subfields of K up to isomorphism. The
list of the Galois groups of the Galois closures of the proper nontrivial subfields of
K is important for our work. We call this the subfield Galois group content of K,
and we denote it by sgg(K).

The sgg content of an extension is an invariant of its Galois group. Indeed,
suppose the normal closure of K/Q2 has Galois group G and let E be the subgroup
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Table 1. Septic Extensions of Q2, including the ramification in-
dex e and Galois group G of a defining polynomial poly

e G poly

1 7T1 u7 = x

7 � x+ 1
7 7T3 t7 = x

7 � 2

fixing K. By Galois theory, the nonisomorphic subfields of K correspond to the
intermediate subgroups F , up to conjugation, such that E  F  G. Specifically,
if K 0 is a subfield and F is its corresponding intermediate group, then the Galois
group of the normal closure of K 0 is equal to the permutation representation of G
acting on the cosets of F in G. Consequently, it makes sense to speak of the sgg

content of a transitive subgroup as well.
For each of these 15 groups, we used [7] to compute their sgg contents. We found

that 5 of these groups – 4, 7, 40, 41, 48 – had 7T4 in their sgg content. This means
that polynomials whose Galois group is one of these 5 possibilities must define
an extension with a septic subfield whose normal closure has Galois group 7T4.
But as we will see in the next section, the only possible Galois groups of degree 7
polynomials over Q2 are either 7T1 or 7T3. This means that these 5 groups cannot
occur as the Galois group of a degree 14 2-adic field.

Therefore, there are only 10 possible Galois groups of degree 14 extensions of
Q2. For each of these possible Galois groups, Table 3 shows their respective sgg

contents. Notice that each group has exactly one entry of the form 7Tj. This shows
that degree 14 extensions of Q2 have a unique septic subfield.

3. Defining Polynomials

As a consequence of Section 2, every degree 14 extension of Q2 can be realized
uniquely as a quadratic extension of a septic 2-adic field. Defining polynomials for
degree 14 2-adic fields are therefore straightforward to compute.

First, we compute all septic 2-adic fields. Such fields are tamely ramified and are
therefore easy to classify using [10]. Table 1 shows that there are two septic 2-adic
fields, the unramified extension (with cyclic Galois group) and a totally ramified
extension (with 7T3 = C7 : C3 as its Galois group). Next, for each septic 2-adic
field, we compute all of its quadratic extensions using [2]. In each case, there are
511 such quadratic extensions. But some of these 1022 extensions are isomorphic.
Using Panayi’s algorithm [15], we discard isomorphic extensions to find a total of
590 nonisomorphic degree 14 extensions ofQ2. Polynomials are available on request
by emailing the first author.

Table 2 contains numerical data on the numbers of these extensions, exclud-
ing the unramified extensions of the two septic 2-adic fields. The Base column
references the two polynomials in Table 1. The column c is the discriminant expo-
nent, G is the Galois group of the defining polynomial, and #Q

14
2 is the number

of non-isomorphic extensions over Q2. Notice that there are 78 extensions that
are ramified quadratic extensions of the unramified septic 2-adic field. There are
510 ramified quadratic extensions of the unique totally ramified septic 7-adic field.
These 588 extensions plus the unramified extensions of the two septic 2-adic fields
gives 590 total degree 14 extensions of Q2. Krasner’s mass formula [12] verifies that
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Table 2. Ramified quadratic extensions of septic 2-adic fields

Base c G #Q

14
2

u7 14 14T1 2
u7 14 14T6 2
u7 14 14T9 6
u7 14 14T21 7
u7 14 14T29 21
u7 21 14T1 4
u7 21 14T9 8
u7 21 14T29 28
t7 14 14T11 1
t7 14 14T18 1
t7 16 14T11 1
t7 16 14T18 1
t7 16 14T35 1
t7 16 14T44 1
t7 18 14T11 2
t7 18 14T18 2
t7 18 14T35 2
t7 18 14T44 2

Base c G #Q

14
2

t7 20 14T5 2
t7 20 14T18 8
t7 20 14T44 6
t7 22 14T11 2
t7 22 14T18 6
t7 22 14T35 6
t7 22 14T44 18
t7 24 14T11 4
t7 24 14T18 12
t7 24 14T35 12
t7 24 14T44 36
t7 26 14T11 4
t7 26 14T18 12
t7 26 14T35 28
t7 26 14T44 84
t7 27 14T5 4
t7 27 14T18 56
t7 27 14T44 196

these are all such extensions. We note that the number of extensions can also be
verified using an implementation of [15] in [19].

4. Galois Groups

It remains to identify the Galois group over Q2 for each of the 590 polynomials.
We follow the standard approach for determining Galois groups [8]. We compute
enough group-theoretic and field-theoretic invariants so as to uniquely identify a
polynomial with its corresponding Galois group. Our strategy is to divide the
above list of 10 groups into smaller pieces that are easily distinguished from each
other. Our first division will be at the level of centralizer order. The order of
the centralizer in S14 of the Galois group is useful as it corresponds to the size of
the automorphism group of the stem field defined by the polynomial. We divide
these smaller sets even further based on their sgg content and their parity. The
parity of a group G is +1 if G ✓ A14 and �1 otherwise. Likewise, the parity of a
polynomial f is +1 if its discriminant is a square in Q2 and �1 otherwise. When
this information is not enough, we introduce a single resolvent polynomial [18], and
use information about its irreducible factors over Q2. This resolvent, denoted as
f364, has degree 364. It corresponds to the subgroup S11 ⇥ S3 of S14 and can be
computed as a linear resolvent on 3-sets [17]; i.e., as a resultant. It can also be
computed in the following way. Let f(x) define a degree 14 extension over Q2, and
let r1, r2, . . . , r14 be the roots of f . Then,

f364(x) =
12Y

i=1

13Y

j=i+1

14Y

k=j+1

(x� ri � rj � rk).
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Table 3. Invariant data for possible Galois groups of degree 14
2-adic fields.

G Parity |CS14(G)| sgg f364 Quad Subs #Q

14
2

14T1 �1 14 2T1,7T1 7
14T5 �1 2 2T1,7T3 7
14T6 +1 2 7T1 146, 282, 564 2
14T21 +1 2 7T1 146, 565 7
14T9 �1 2 7T1 146, 565 one 14
14T29 �1 2 7T1 146, 565 none 49
14T11 +1 2 7T3 282, 422, 56, 168 14
14T35 +1 2 7T3 422, 562, 168 49
14T18 �1 2 7T3 422, 562, 168 one 98
14T44 �1 2 7T3 422, 562, 168 none 343

We note that in our search for suitable resolvent polynomials, we also looked at a
lower degree linear resolvent (corresponding to the group S2⇥S12), subfields of the
field defined by this lower degree resolvent, and other subfield information of f364.
In order to keep the computational di�culty of our algorithm as low as possible,
we focused on subfields of degree less than 12, with a preference toward quadratic
subfields of the fields defined by the irreducible factors of the linear resolvents.
Under these constraints, we found the degree 56 factors of f364 to be the smallest
degree factors that accomplished our needs.

Table 3 contains all pertinent invariant data for each Galois group. Notice that
all groups can be distinguished using parity, centralizer order, sgg content, and the
degrees of the factors of f364 except for two sets: 14T9/14T29 and 14T18/14T44.
But in both cases, the groups can be distinguished by counting quadratic subfields
of the fields defined by the degree 56 factors of f364. In these two cases, we have
also verified Galois group computations with [14] by computing sizes of splitting
fields. As before, we include the column #Q

14
2 , which represents the number of non-

isomorphic extensions over Q2 with the corresponding Galois group (which can also
be inferred from Table 2). The other columns are defined as follows: |CS14(G)|
gives the size of the centralizer of the group in S14, sgg gives the sgg content of
the group, f364 gives the degrees of the irreducible factors of f364, and Quad Subs

gives the number of quadratic subfields of the fields defined by the degree 56 factors
of f364.

On our workstation – two quad-core Intel Xeon processors (2.4GHz) – our Galois
group computations finished in just over 4 months (125 days). The most di�cult
cases (where the Galois group was either 14T9/14T29 or 14T18/14T44) took on
average 20–25 hours per polynomial.
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