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Abstract. This paper is concerned with the 513 isomorphism classes of de-
gree 12 2-adic fields whose automorphism groups have order 4. For each ex-
tension, we identify a defining polynomial, the extension’s ramification index,
residue degree, and discriminant, and the Galois group of the extension’s nor-
mal closure. These results extend previous work of Jones-Roberts, Awtrey,
and Awtrey-Shill.

1. Introduction

Let p be a prime number and n a positive integer. A standard result in number
theory states that there are only finitely many nonisomorphic degree n extensions
of the p-adic numbers [13, p. 54]. It is therefore theoretically possible to classify
all such extensions. Early research into this problem has produced mass formulas;
formulas for the number of extensions of a local field which count subfields of an
algebraic closure. For example, Krasner [12] gives a formula for the number of
totally ramified extensions of a local field of specified degree. The main tool used is
his well-known lemma. As another example, Serre [18] computes the number of ex-
tensions in two di↵erent ways, one using Eisenstein polynomials, the other applying
Weyl’s integration formula to the multiplicative group of a division algebra.

Current research is focused on determining arithmetic invariants for each iso-
morphism class of extensions, including the ramification index, residue degree, dis-
criminant, and Galois group (of the normal closure). Only certain cases have been
completely determined. For example, if p - n, then each extension is tamely rami-
fied and is therefore well understood [10]. If p = n, then the situation has also been
solved [1, 10]. If p | n and n is composite, then the situation is more complicated,
and researchers have dealt with these extensions on a case-by-case basis. Jones-
Roberts have studied all p-adic fields of degree n  10 in [9, 10, 11]. Awtrey and
coauthors have classified degree 12 extensions of the 3-adic numbers [3] and 2-adic
numbers [5, 6], as well as degree 14 extensions of the 2-adic numbers [4].

In this paper, we focus on degree 12 2-adic fields with mass equal to 3; i.e.,
those extensions whose automorphism group has order 4. After describing the
computation of defining polynomials of such extensions in the next section, we use
the final sections of the paper to show that the Galois groups of these polynomials
can be computed using subfield information, the discriminant, and an additional
resolvent polynomial [8, 20, 21].
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2. Defining Polynomials

In this section, we outline our method for determining defining polynomials of
degree 12 2-adic fields with automorphism group of order 4.

We employ a strategy that is similar in spirit to the algorithms in [16, 14], by
realizing our fields as towers of extensions. In both cases, the authors focus on
enumerating totally ramified extensions of a general p-adic field, though their re-
spective methods for identifying one polynomial per isomorphism class are slightly
di↵erent. However, when taking norms of polynomials defining these relative ex-
tensions to produce polynomials defining absolute extensions (over the base field
Qp), there can remain a necessity to discard isomorphic extensions. In this case,
the standard approach is to employ Panayi’s root-finding algorithm [15], which can
determine whether two polynomials define isomorphic p-adic fields.

Our approach is similar. We first note that every degree 12 2-adic field with
automorphism group of order 4 has a degree 6 subfield (take the fixed field of an
element of order two in the automorphism group, or see Corollary 4.2). This result
then implies that each of our extensions can be realized as a quadratic extension
of a sextic 2-adic field. Using the complete list of sectic 2-adic fields in [10], we
construct all quadratic extensions of these fields using [2]. Using Panayi’s algorithm,
we extract only those extensions with automorphism group of order 4, and we
discard isomorphic extensions. Using this approach, we found 513 nonisomorphic
degree 12 2-adic fields with automorphism group of order 4. Table 4 in Section 5
shows defining polynomials, their Galois group, the extension’s residue degree and
discriminant exponent for a sampling of the extensions (the complete data set is
available from the first author).

3. Possible Galois Groups

Having computed a defining polynomial for each extension under consideration,
we now turn our attention to determining the Galois group of each polynomial.

Given one of our defining polynomials f , let K denote the corresponding exten-
sion defined by adjoining to Q2 a root of f . We wish to compute the Galois group
G of f , or equivalently the Galois group of the normal closure of K. Since the
elements of G act as permutations on the roots of f , once we fix an ordering on
the roots, G can be be considered as a subgroup of S12, well-defined up to conju-
gation (di↵erent orderings correspond to conjugates of G). Since the polynomial f
is irreducible, G is a transitive subgroup of S12; i.e., there is a single orbit for the
action of G on the roots of f (each orbit corresponds to an irreducible factor of
f). Therefore G must be a transitive subgroup of S12. Our method for computing
Galois groups thus relies on the classification of the 301 transitive subgroups of S12

[17].
However, not all of these 301 groups can occur as the Galois group of a degree

12 2-adic field, as we show next.

Definition 3.1. Let L/Qp be a Galois extension with Galois group G. Let v be
the discrete valuation on L and let ZL denote the corresponding discrete valuation
ring. For an integer i � �1, we define the i-th ramification group of G to be
the following set

Gi = {� 2 G : v(�(x)� x) � i+ 1 for all x 2 ZL}.
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The ramification groups define a sequence of decreasing normal sugroups which
are eventually trivial and which give structural information about the Galois group
of a p-adic field. A proof of the following result can be found in [19, Ch. IV].

Lemma 3.2. Let L/Qp be a Galois extension with Galois group G, and let Gi

denote the i-th ramification group. Let p denote the unique maximal ideal of ZL

and U0 the units in L. For i � 1, let Ui = 1 + pi.

(a) For i � 0, Gi/Gi+1 is isomorphic to a subgroup of Ui/Ui+1.

(b) The group G0/G1 is cyclic and isomorphic to a subgroup of the group of

roots of unity in the residue field of L. Its order is prime to p.

(c) The quotients Gi/Gi+1 for i � 1 are abelian groups and are direct products

of cyclic groups of order p. The group G1 is a p-group.

(d) The group G0 is the semi-direct product of a cyclic group of order prime to

p with a normal subgroup whose order is a power of p.

(e) The groups G0 and G are both solvable.

Applying this lemma to our scenario, where K/Q2 is the extension defined by
f , and G is the Galois group of f , we see that G is a solvable transitive subgroup
of S12; of which there are 265 [17]. Furthermore, G contains a solvable normal
subgroup G0 such that G/G0 is cyclic. The group G0 contains a normal subgroup
G1 such that G1 is a 2-group (possibly trivial), and G0/G1 is cyclic of order dividing
2[G:G0] � 1. Only 134 subgroups have the correct filtration. By Galois theory, it
follows that the automorphism group of K/Q2 is isomorphic to the centralizer of G
in S12. Therefore, we need only consider those subgroups whose centralizer order
is 4.

Direct computation on the 134 candidates shows that only 27 groups can occur
as the Galois group of f . Using the transitive group notation in [7], these groups
are TransitiveGroup(12,n), where n is one of the following possibilities:

6, 7, 9, 10, 11, 21, 23, 24, 25, 26, 29, 30, 31, 48, 53, 55, 62, 63, 67,
68, 94, 95, 98, 101, 103, 139, 150.

4. Computation of Galois Groups

In this section, we describe our approach for computing the Galois group of the
normal closure of a degree 12 2-adic field with automorphism group of order 4.
We follow the standard approach for determining Galois groups [8]; we compute
enough group-theoretic and field-theoretic invariants so as to uniquely identify a
polynomial with its corresponding Galois group. However, our method is of interest
since we use only three invariants: Galois groups of subfields, the discriminant, and
a linear resolvent polynomial.

First, we focus on subfield information. Toward that end, let K/Q2 be a degree
12 extension defined by an irreducible polynomial f from Table 4, and consider
the subfields of K up to isomorphism. The list of the Galois groups of the normal
closures of the proper nontrivial subfields of K is important for our work. We call
this the subfield Galois group content of K, and we denote it by sgg(K).

Proposition 4.1. The set sgg(K) is an invariant of its Galois group (thus it makes

sense to speak of the subfield content of a transitive group).

Proof. Let G denote the Galois group of f (i.e., of the normal closure of K/Q2).
Let E be the subgroup fixing K, arising from the Galois correspondence. The
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nonisomorphic subfields of K correspond to the intermediate subgroups F , up to
conjugation, such that E  F  G. Furthermore, if K 0 is a subfield and F is its
corresponding intermediate group, then the Galois group of the normal closure of
K

0 is isomorphic to the image of the permutation representation of G acting on
the cosets of F in G. Consequently, every polynomial with Galois group G must
have the same subfield content, and this quantity can be determined by a purely
group-theoretic computation on G. ⇤

For each possible Galois group of a degree 12 2-adic field with automorphism
group of order 4 (listed in Section 2), Tables 1–3 lists the sgg content. Using this
data, we have an alternative proof that every extension under consideration has a
sextic subfield.

Corollary 4.2. Let K/Q2 be a degree 12 extension and suppose that the automor-

phism group of K has order 4. Then K has a sextic subfield.

Proof. Since sgg(K) is an invariant of the Galois group of the normal closure of K,
we need only analyze the sgg contents of the possible Galois groups in Tables 1–3.
We see that each possible group has an sgg content that contains an element of the
form 6Tj. Moreover, if the automorphism group is cyclic, there is a unique such
sextic subfield. Otherwise, there are three, since in this case the automorphism
group is the Klein 4-group (which has three elements of order 2). In particular, this
proves that every extension K has a sextic subfield. ⇤

In addition to the sgg content, we also make use of the parity of the extension.
The parity of a group G is +1 if G ✓ A12 and �1 otherwise. Likewise, the parity
of an extension is +1 if its discriminant is a square in Q2 and �1 otherwise. As
Tables 1 and 3 show, the sgg content and parity are enough to determine Galois
groups in all but 5 of the 27 cases.

For the other 5 cases, we introduce a resolvent polynomial [21], and use infor-
mation about its irreducible factors over Q2. This resolvent, denoted as f220, has
degree 220. It corresponds to the subgroup S9 ⇥S3 of S12 and can be computed as
a linear resolvent on 3-sets [20]; i.e., as a resultant. It can also be computed in the
following way. Let f(x) define a degree 12 extension over Q2, and let r1, r2, . . . , r12
be the roots of f . Then,

f220(x) =
10Y

i=1

11Y

j=i+1

12Y

k=j+1

(x� ri � rj � rk).

As Table 2 shows, the groups 12T31, 12T55, and 12T62 can all be distinguished
by the list of degrees of the irreducible factors of f220. However, 12T63 and 12T95
cannot be distinguished by degree considerations alone. However, in this case, we
see that f220 has a unique a degree 48 factor. It turns out that the field defined
by this degree 48 factor has a unique degree 8 subfield, and the Galois group of
this degree 8 extension is enough to distinguish 12T63 and 12T95 (see the column
Octic Sub). Note: to compute the Galois group of a degree 8 polynomial over Q2,
we can use [11].

In Tables 1–3, the final column #Q12
2 gives the number of extensions with the

corresponding Galois group.
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Table 1. Subfield content for transitive subgroups of S12 with
centralizer order 4 that are subgroups of A12 and can be distin-
guished by their sgg content. The last column gives the number
of extensions with the corresponding Galois group.

G Subfields #Q12
2

12T6 3T1, 6T4, 6T6 7
12T7 2T1, 3T1, 6T1, 6T4, 6T6 7
12T9 2T1, 3T2, 6T2, 6T7, 6T8 3
12T10 2T1, 2T1, 2T1, 3T2, 4T2, 6T3, 6T3, 6T3 4
12T21 2T1, 3T2, 6T2, 6T11, 6T11 9
12T23 2T1, 3T2, 6T3, 6T7, 6T11 18
12T24 2T1, 3T2, 6T3, 6T8, 6T11 18
12T25 2T1, 3T1, 6T1, 6T6, 6T6 21
12T26 3T1, 6T6, 6T6, 6T6 14
12T48 2T1, 3T2, 6T3, 6T11, 6T11 36
12T67 3T2, 6T7, 6T7, 6T7 1
12T68 3T2, 6T7, 6T8, 6T8 3
12T101 3T2, 6T7, 6T11, 6T11 18
12T103 3T2, 6T8, 6T11, 6T11 18
12T139 3T2, 6T11, 6T11, 6T11 24

Table 2. Subfield content for transitive subgroups of S12 with
centralizer order 4 that are subgroups of A12 and cannot be distin-
guished by their sgg content. The last column gives the number
of extensions with the corresponding Galois group.

G Subfields f220 Octic Subs #Q12
2

12T31 3T1, 6T4 12, 164, 242, 482 2
12T55 3T1, 6T4 12, 242, 322, 482 14
12T62 3T2, 6T7 12, 164, 48, 96 6
12T63 3T2, 6T7 12, 322, 48, 96 8T14 6
12T95 3T2, 6T7 12, 322, 48, 96 8T24 36

Table 3. Subfield content for transitive subgroups of S12 with
centralizer order 4 that are not subgroups of A12. The last column
gives the number of extensions with the corresponding Galois
group.

G Subfields #Q12
2

12T11 2T1, 3T2, 4T1, 6T3 8
12T29 2T1, 3T1, 6T1 12
12T30 2T1, 3T2, 6T2 12
12T53 2T1, 3T2, 6T3 24
12T94 3T1, 6T6 48
12T98 3T2, 6T8 48
12T150 3T2, 6T11 96

5. Sample Data Table

As a sample, Table 4 gives polynomials and their associated invariants for some
of the degree 12 2-adic fields that have an automorphism group of order 4. For each
polynomial, the table also gives its Galois group, as well as the ramification index
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Table 4. Defining polynomials and invariants for some of the de-
gree 12 2-adic fields with automorphism group of order 4. The
column e gives the ramification index, c gives the discriminant ex-
ponent, and G gives the Galois group as a transitive subgroup of
S12 (using the numbering system of [7]).

Polynomial e c G

x

12 � 6x10 � 73x8 + 140x6 + 79x4 � 6x2 + 57 2 12 12T7
x

12 + 66x10 � 93x8 � 68x6 � 41x4 + 66x2 � 123 2 12 12T29
x

12 + 22x10 + 75x8 � 12x6 � 89x4 + 54x2 � 115 2 12 12T29
x

12 � 2x10 � 65x8 + 100x6 � 97x4 � 98x2 + 97 2 12 12T25
x

12 + 132x10 � 4468x8 � 4640x6 � 4752x4 + 2112x2 � 7872 2 18 12T29
x

12 � 4x10 � 260x8 � 3296x6 + 2544x4 + 5056x2 + 6208 2 18 12T25
x

12 + 44x10 + 1324x8 � 6240x6 � 5520x4 � 6464x2 � 7360 2 18 12T29
x

12 � 12x10 � 2340x8 + 1120x6 + 1264x4 � 192x2 + 3648 2 18 12T25
x

12 � 18x10 + 171x8 + 116x6 � 313x4 + 190x2 + 877 6 12 12T30
x

12 � x

10 + 2x8 � x

6 � 2x4 + 3x2 + 1 6 12 12T9
x

12 � 54x10 � 509x8 � 964x6 � 777x4 � 934x2 + 357 6 16 12T30
x

12 + x

10 � 2x8 � 3x6 + 2x4 � 3x2 + 1 6 16 12T21
x

12 + 14x10 � 5x8 � 12x6 � 5x4 + 14x2 � 11 6 20 12T30
x

12 + x

10 + x

6 + x

2 + 1 6 20 12T21
x

12 � 14x10 + 19x8 + 24x6 + 3x4 � 26x2 + 13 6 20 12T30
x

12 + 14x10 + 16x8 � 8x6 � 8x4 + 16x2 + 16 6 20 12T9
x

12 � 18x10 � 21x8 � 8x6 + 19x4 � 6x2 + 21 6 20 12T30
x

12 � 6x10 � x

8 + 4x6 + 3x4 + 2x2 � 7 6 20 12T9
x

12 � 26x10 � 5x8 + 8x6 + 19x4 + 2x2 + 21 6 20 12T30
x

12 � 5x8 + 4x6 + 3x4 + 8x2 � 7 6 20 12T21
x

12 � 2x10 + 4x8 + 4x6 + 4x4 + 4 6 22 12T21
x

12 � 28x10 + 64x8 � 20x6 � 36x4 + 24x2 + 36 6 22 12T21
x

12 + 2x10 + 4x6 + 4x4 + 8x2 + 4 6 22 12T21
x

12 + 36x8 � 52x6 + 4x4 + 24x2 � 44 6 22 12T30
x

12 + 40x10 + 4x8 + 20x6 � 12x4 + 40x2 + 52 6 22 12T30
x

12 � 6x10 + 6x8 + 8x4 � 4x2 + 4 6 22 12T21
x

12 + 56x10 + 48x8 � 60x6 + 48x4 + 64x2 + 52 6 22 12T30
x

12 � 4x10 + 6x8 + 4x4 � 4x2 + 4 6 22 12T21
x

12 � 14x10 � 10x8 � 8x6 + 8x4 � 4x2 � 12 6 22 12T30
x

12 � 2x10 � 2x8 + 8x4 + 4x2 + 4 6 22 12T21
x

12 + 56x10 � 28x8 � 4x6 + 52x4 + 56x2 � 44 6 22 12T30
x

12 � 24x10 � 16x8 � 20x6 � 16x4 + 20 6 22 12T30

and discriminant exponent of its corresponding extension field. The entire list can
be obtained by emailing the first author.
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