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Abstract We discuss the construction and factorization pattern of a linear resolvent
polynomial that is useful for computing Galois groups of degree 14 polynomials.
As an application, we develop an algorithm for computing the Galois group of a
degree 14 polynomial defined over the 7-adic numbers. This algorithm is of interest
since it only makes use of the aforementioned linear resolvent, the polynomial’s
discriminant, and subfield information of the polynomial’s stem field.

1 Introduction

Let p be a prime number. An important problem in computational number theory is
to determine the Galois group of an irreducible polynomial f defined over the field
of p-adic numbers Qp. If the degree of f is either equal to p or is not a multiple of p,
then it is straightforward to compute the Galois group of f (see for example [1, 11]).
Otherwise, the situation is more complicated, with no practical general algorithm
currently available. However, several researchers have developed ad hoc techniques
that depend on both the degree of f and the prime p ([2, 3, 4, 5, 6, 7, 10, 11, 12]).

In this paper, we focus on determining the Galois group G when the degree of
f is 14 and p = 7 (lower degrees have already been treated). Since the elements of
G act as permutations on the roots of f , once we fix an ordering on the roots, G
can be be considered as a subgroup of S14, well-defined up to conjugation (different
orderings correspond to conjugates of G). Since f is irreducible, G is a transitive
subgroup of S14; i.e., there is a single orbit for the action of G on the roots of f (each
orbit corresponds to an irreducible factor of f ). Therefore our aim is to identify G
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among the 63 transitive subgroups of S14, following the naming convention that is
implemented in [9].

All permutation group computations described in this paper were performed with
[9], making extensive use of its transitive group data library. In particular, GAP con-
tains all relevant data concerning transitive groups of S14 needed for our work. The
reliability of GAP in this context is supported by the fact that its transitive group data
library was authored by Alexander Hulpke, a leading researcher in computational
group theory.

The remainder of the paper is structured as follows. Section 2 introduces the
basic properties of ramification groups to give structural information on possible
Galois groups over Qp. As a consequence of this section, we will show that only
14 of the 63 transitive subgroups of S14 are candidates for Galois groups of degree
14 polynomials over Q7. The goal then becomes to compute enough invariants to
uniquely identify the Galois group from among these 14 possibilities. In Section
3, we introduce three invariants associated to a polynomial’s stem field; namely, the
size of its automorphism group, its discriminant, and the Galois groups of its proper,
nontrivial subfields. These invariants are enough to distinguish 5 of the 14 possible
cases. In the final section, we introduce a linear resolvent polynomial that is able
to distinguish the remaining 9 cases. Since the number of isomorphism classes of
degree 14 extensions of Q7 is finite [13, p.54], it is possible to compute a defining
polynomial for each extension and implement our algorithm to compute the poly-
nomial’s Galois group. We have carried out this computation, and our results are
summarized in Table 1; the final column lists the number of extensions by Galois
group.

2 Ramification Groups

The aim of this section is to introduce the basic properties of ramification groups
(over general p-adic fields) and use those to deduce structural information about
degree 14 extensions of Q7. A more detailed exposition can be found in [17].

Definition 1. Let L/Qp be a Galois extension with Galois group G. Let v be the dis-
crete valuation on L and let ZL denote the corresponding discrete valuation ring. For
an integer i � �1, we define the i-th ramification group of G to be the following
set

Gi = {s 2 G : v(s(x)� x)� i+1 for all x 2 ZL}.

The ramification groups define a sequence of decreasing normal subgroups which
are eventually trivial and which give structural information about the Galois group
of a p-adic field.

Lemma 1. Let L/Qp be a Galois extension with Galois group G, and let Gi denote
the i-th ramification group. Let p denote the unique maximal ideal of ZL and U0 the
units in L. For i � 1, let Ui = 1+pi.
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(a) For i � 0, Gi/Gi+1 is isomorphic to a subgroup of Ui/Ui+1.
(b) The group G0/G1 is cyclic and isomorphic to a subgroup of the group of roots of

unity in the residue field of L. Its order is prime to p.
(c) The quotients Gi/Gi+1 for i � 1 are abelian groups and are direct products of

cyclic groups of order p. The group G1 is a p-group.
(d) The group G0 is the semi-direct product of a cyclic group of order prime to p

with a normal subgroup whose order is a power of p.
(e) The groups G0 and G are both solvable.

A proof can be found in [17, §IV].
Specializing to the case where L is the splitting field of an irreducible degree 14

polynomial defined over Q7, we see that G is a solvable transitive subgroup of S14;
of which there are 36. Furthermore, G contains a solvable normal subgroup G0 such
that G/G0 is cyclic. The group G0 contains a normal subgroup G1 such that G1 is a
7-group (possibly trivial). Moreover, G0/G1 is cyclic of order dividing 7[G:G0]

� 1.
Direct computation on the 36 candidates shows that only 20 are possible Galois
groups.

For each of these 20 groups, consider all index 3 subgroups (if there are any); the
index 3 subgroups correspond to cubic subfields of L. Now for each such subgroup
H, consider the permutation representation of G acting on the cosets of H in G,
which is isomorphic to the Galois group of the corresponding cubic subfield. Since
all cubic extensions of Q7 are cyclic (cf. [11]), we can rule out those groups from
among the 20 that exhibit an S3 permutation representation; there are 6 such groups.

Thus, there are 14 possible Galois groups of degree 14 polynomials over Q7. We
identify these groups in the table below using the transitive numbering system in [9].
The second column gives an alternate naming scheme, which is also implemented in
GAP. Later in the paper, we will reference these groups using only their first column
identification.

14T1 C14
14T2 D7
14T3 D7C2
14T4 2[1/2]F42(7)
14T5 F21C2
14T7 F42C2
14T8 C7 oC2
14T12 1/2[D(7)2]2
14T13 [1/2.D(7)2]2
14T14 [72 : 3]2
14T20 D7 oC2
14T23 [1/6+.F2

42]22
14T24 [72 : 6]2
14T32 [D(7)2 : 3]2
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3 Stem Field Invariants

As before, let f be a degree 14 polynomial defined over Q7, and let G be its Galois
group. Our aim in this section is to introduce three field-theoretic invariants, related
to the stem field of f , that will aid in our computation of G.

First, we consider the stem field of f and its corresponding subgroup H (under
the Galois correspondence). Thus H is isomorphic to G\ S13, the point stabilizer
of 1 in G. By Galois theory, the automorphism group of the stem field is therefore
isomorphic to N(H)/H (where N(H) represents the normalizer of H in G), which
is in turn isomorphic to the centralizer of G in S14. In our work, we make use of the
size of the automorphism group of the stem field of f , which is equal to the order of
the centralizer in S14 of G.

Another invariant we employ is related to the discriminant of f . We say the parity
of the polynomial f is +1 if the discriminant of f is a square in Q7; otherwise, the
parity is �1. On the group theory side, the parity of a polynomial’s Galois group is
+1 if G ✓ A14 and �1 otherwise.

The third invariant we consider is related to the list of the Galois groups of the
Galois closures of the proper nontrivial subfields (up to isomorphism) of the stem
field of f . We call this the subfield Galois group content of f , and we denote it by
sgg( f ).

Example 1. For example, consider the polynomial x14 +2x2
�2x+3, which defines

the unique unramified degree 14 extension of Q7. Thus the Galois group G of this
polynomial is cyclic of order 14. Since the transitive group notation in [9] lists cyclic
groups first, the T -number of G is 14T1. By the fundamental theorem of Galois
theory, since G has a unique cyclic subgroup for every divisor of its order, the stem
field of f has unique subfields of degrees 2 and 7. These subfields define the unique
unramified extensions of Q7 of their respective degrees, and therefore their Galois
groups are also cyclic. Thus the sgg content of f is {2T1, 7T1}.

In general, to compute the sgg content of a polynomial f , we can make use of
the complete lists of quadratic and septic 7-adic fields determined in [11] (these lists
include defining polynomials along with their Galois groups). For each polynomial
in these lists, we can use Panayi’s p-adic root-finding algorithm [14, 16] to test if the
polynomial has a root in the field defined by f . If it does, then this polynomial de-
fines a subfield of the field defined by f . Continuing in this way, it is straightforward
to compute the sgg content of f .

The process of employing the sgg content of a polynomial to identify its Galois
group is justified by the following result.

Proposition 1. The sgg content of a polynomial is an invariant of its Galois group
(thus it makes sense to speak of the sgg content of a transitive group).

Proof. Suppose the polynomial f defines an extension L/K of fields, and let G de-
note the Galois group of f . Let E be the subgroup fixing L/K, arising from the
Galois correspondence. The nonisomorphic subfields of L/K correspond to the in-
termediate subgroups F , up to conjugation, such that E  F  G. Furthermore, if
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K0 is a subfield and F is its corresponding intermediate group, then the Galois group
of the normal closure of K0 is equal to the permutation representation of G acting
on the cosets of F in G. Consequently, every polynomial with Galois group G must
have the same subfield content, and this quantity can be determined by a purely
group-theoretic computation. ut

For each of the 14 possible Galois groups of degree 14 extensions of Q7, Table 1
shows their respective data for centralizer order, parity, and sgg content, with the
groups sorted based on their corresponding characteristics. Notice that these three
invariants are enough to uniquely identify the five Galois groups 14T1, 14T2, 14T3,
14T5, and 14T8. The final column in the table shows the number of isomorphism
classes of degree 14 extensions of Q7 that have the corresponding group as the Ga-
lois group of their normal closure. Note, defining polynomials for these extensions
can be computed with a built-in command in [15] (there are a total of 654 such
extensions).

To distinguish between the remaining 9 Galois groups, we make use of a linear
resolvent (in the sense of [18]).

4 A Linear Resolvent

We begin with a definition of a general resolvent polynomial.

Definition 2. Let T (x1, . . . ,x14) be a polynomial with integer coefficients. Let H be
the stabilizer of T in S14. That is,

H =
�

s 2 S14 : T (xs(1), . . . ,xs(14)) = T (x1, . . . ,x14)
 
.

We define the resolvent polynomial R f ,T (x) of the polynomial f (x) 2 Z[x] by

R f ,T (x) = ’
s2S14/H

�
x�T (rs(1), . . . ,rs(14))

�
,

where S14/H is a complete set of right coset representatives of S14 modulo H and
where r1, . . . ,r14 are the roots of f (x). By Galois theory, R f ,T (x) also has integer
coefficients.

The main theorem concerning resolvent polynomials is the following. A proof
can be found in [18].

Theorem 1. With the notation of the preceding definition, set m = [S14 : H] =
deg(R f ,T ). If R f ,T is squarefree, its Galois group (as a subgroup of Sm) is equal
to f(G), where f is the natural group homomorphism from S14 to Sm given by the
natural right action of S14 on S14/H. Note that we can always ensure R is squarefree
by taking a suitable Tschirnhaus transformation of f [8, p. 318].
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As a consequence, this theorem implies that the list of degrees of irreducible
factors of R f ,T is the same as the length of the orbits of the action of f(G) on the
set [1, . . . ,m]. In particular, the Galois group of an irreducible factor of R f ,T can be
determined by a purely group-theoretic computation.

Our linear resolvent is constructed as follows. Let T (x1, . . . ,x14) = x1+x2, which
is stabilized by the subgroup H ' S2 ⇥S12 and which is generated by the following
three permutations,

(1,2),(3,4),(3,4,5,6,7,8,9,10,11,12,13,14).

Since [S14 : H] = 91, the corresponding resolvent polynomial, which we denote by
F91, has degree 91, and it can be computed by,

F91(x) =
13

’
i=1

14

’
j=2

(x� ri � r j),

where ri are the roots of the degree 14 polynomial f . However, since T is linear, it
can also be computed as a resultant (as in [18]). In particular, let

g(x) = Resultanty( f (y), f (x+ y))/x14.

Then F91(x) = g(
p

x).
The list of the irreducible factors of F91 is enough to distinguish 4 of the 9 re-

maining Galois groups (14T4, 14T7, 14T12, and 14T23), as seen in Table 1. For
the remaining 5 cases, we note that F91 has a unique irreducible factor of degree 49.
It turns out that if we consider Galois groups of septic subfields of the stem field
of this degree 49 factor, then this information is enough to distinguish between the
remaining Galois groups.
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