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Abstract Let p be a prime number and n a positive integer. In recent years, several
authors have focused on classifying degree n extensions of the p-adic numbers; the
most difficult cases arising when p j n and n is composite. Since current research
has dealt with n  10 when p = 2, this paper considers degree 12 extensions of the
2-adic numbers. Focusing on extensions whose automorphism groups have order 6
or 12, we compute the Galois group of each extension (or of the normal closure
for non-Galois extensions), and identify the group as a transitive subgroup of S12.
Our method for computing Galois groups is of interest, since it does not involve
factoring resolvent polynomials (which is the traditional approach).

1 Introduction

The p-adic numbers Qp are foundational to much of 20th and 21st century number
theory (e.g., number fields, elliptic curves, L-functions, and Galois representations)
and are connected to many practical applications in physics and cryptography. Of
particular interest to number theorists is the role they play in computational attacks
on certain unsolved questions in number theory, such as the Riemann Hypothesis
and the Birch and Swinnerton-Dyer conjecture (among others). The task of clas-
sifying p-adic fields therefore has merit, since the outcomes of such a pursuit can
provide computational support to the afore-mentioned problems as well as other
number-theoretic investigations.

Classifying extensions of Qp entails gathering explicit data that uniquely deter-
mine the extensions, including,
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1. the number of nonisomorphic extensions for a given prime p and degree n (nec-
essarily finite [15, p. 54]),

2. defining polynomials for each extension, and
3. the Galois group of the extension’s polynomial (a difficult computational prob-

lem in general).

When p - n (i.e., tamely ramified extensions) or when p = n, then items (1)–(3) are
well understood (cf. [1, 12]). When p j n and n is composite, the situation is more
complicated.

In this paper, we study Items (1)–(3) for degree 12 extensions of Q2, as exten-
sions of smaller degree have already been discussed in the literature ([3, 4, 5, 6,
11, 12, 13]). Specifically, we focus on Galois extensions as well as those exten-
sions whose automorphism groups have order 6. After describing the computation
of defining polynomials of such extensions in the next section, we use the final
sections of the paper to show that the Galois groups of these polynomials can be
computed solely by knowing the Galois groups of their proper subfields. This ap-
proach is of interest, since it offers a method for computing Galois groups of local
fields that is different from both the resolvent approach [10, 23, 24] and the Newton
polygon approach [9, 19].

2 The Number of Extensions and Defining Polynomials

In regards to counting the number of extensions of p-adic fields, some authors have
developed what are known as “mass” formulas [14, 18, 21], where the mass of
an extension K=Qp takes into account the degree of the extension as well as its
automorphism group. The mass is defined as:

mass(K=Qp) =
[K : Qp]

jAut(K=Qp)j
:

The mass formulas previously mentioned compute the total mass for all extensions
of Qp of a given degree. As such, different embeddings are counted separately.
Therefore these formulas do not give the number of nonisomorphic extensions.
Since there is currently no known formula for computing the number of noniso-
morphic extensions of Qp for a given degree, the approach taken in the literature is
to resolve Item (1) by first completing Item (2) (cf. [4, 11, 12, 13]).

The most general reference for the computation of defining polynomials of p-
adic fields is [18]. Using the methods of Krasner [14], Pauli-Roblot develop an
algorithm for computing extensions of a p-adic field of a given degree by providing
a generating set of polynomials to cover all possible extensions. Essential to their
method is Panayi’s root-finding algorithm [16], which can be used to determine
whether two polynomials define isomorphic p-adic fields.
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Table 1 shows the number of nonisomorphic extensions of Qp of degree n where
p j n and n  12 is composite. This data can be verified by [17], which includes an
implementation of the Pauli-Roblot algorithm in its latest release.

Table 1 Number of certain nonisomorphic degree n extensions of Qp.

(p;n) (2,4) (2,6) (3,6) (2,8) (3,9) (2,10) (5,10) (2,12) (3,12)
# 59 47 75 1834 795 158 258 5493 785

Using the Pauli-Roblot algorithm [18], we see there are 5493 degree 12 exten-
sions of Q2. Using Panayi’s root-finding algorithm to compute the size of each ex-
tension’s automorphism group, we can show that 27 are Galois extensions and 55
have an automorphism group of order 6. For convenience, Tables 2 and 3 give sam-
ple defining polynomials for these two cases, respectively, along with the ramifica-
tion index, residue degree, and discriminant exponent of the corresponding exten-
sion field.

3 Possible Galois Groups

Having computed a defining polynomial for each extension under consideration, we
now turn our attention to determining the Galois group of each polynomial.

Given one of the polynomials f in either Table 2 or 3, let K denote the corre-
sponding extension defined by adjoining to Qp a root of f . We wish to compute
the Galois group G of f , or equivalently the Galois group of the normal closure of
K. Since the elements of G act as permutations on the roots of f , once we fix an
ordering on the roots, G can be be considered as a subgroup of S12, well-defined up
to conjugation (different orderings correspond to conjugates of G). Since the poly-
nomial f is irreducible, G is a transitive subgroup of S12; i.e., there is a single orbit
for the action of G on the roots of f (each orbit corresponds to an irreducible factor
of f ). Therefore G must be a transitive subgroup of S12. Our method for computing
Galois groups thus relies on the classification of the 301 transitive subgroups of S12
[20].

However, not all of these 301 groups can occur as the Galois group of a degree
12 2-adic field, as we show next.

Definition 1. Let L=Qp be a Galois extension with Galois group G. Let v be the dis-
crete valuation on L and let ZL denote the corresponding discrete valuation ring. For
an integer i � �1, we define the i-th ramification group of G to be the following
set

Gi = fs 2 G : v(s(x)� x)� i+1 for all x 2 ZLg:

The ramification groups define a sequence of decreasing normal sugroups which are
eventually trivial and which give structural information about the Galois group of a
p-adic field. A proof of the following result can be found in [22, Ch. IV].
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Table 2 Polynomials for all degree 12 Galois extensions of Q2, including ramification index e,
residue degree f , and discriminant exponent c.

Polynomial e f c

1 x12 + x6 + x4
� x+1 1 12 0

2 x12
� x10

�6x8
� x6 +2x4 +7x2 +5 3 4 8

3 x12
�78x10

�1621x8 +460x6
�1977x4 +866x2 +749 2 6 12

4 x12
�162x10 +26423x8 +125508x6

�64481x4
�122498x2

�86071 2 6 12
5 x12

�16x10 +24x6 +64x4 +64 2 6 18
6 x12 +52x10

�28x8 +8x6 +64x4
�32x2 +64 2 6 18

7 x12
�156x10 +9900x8

�61856x6 +33904x4 +27712x2 +47936 2 6 18
8 x12

�52x10 +1100x8
�12000x6

�61072x4 +62144x2
�62144 2 6 18

9 x12 +12x10 +12x8 +8x6 +32x4
�16x2 +16 6 2 16

10 x12 + x10 +6x8
�3x6 +6x4 + x2

�3 6 2 16
11 x12

�84x10 +444x8 +32x6
�272x4

�320x2 +64 6 2 22
12 x12

�60x6 +52 6 2 22
13 x12 +2x10 +4x8 +4x6 +4x4 +4 6 2 22
14 x12

�20x6 +20 6 2 22
15 x12

�4x11
�10x10 +16x9

�6x8 +16x7 +4x6
�8x5 +16x4 4 3 24

+16x3 +16x2 +8
16 x12 +28x11

�2x10 +16x9 +26x8 +8x7 +20x6
�24x5

�8x4 4 3 24
+32x3 +32x2 +32x+24

17 x12 +32x11
�10x10 +8x9

�18x8 +32x7 +20x6 +24x5
�24x4 4 3 24

+32x3 +16x2
�24

18 x12
�4x11 +14x10 +36x9

�34x8
�32x7

�48x6
�32x5 +36x4 4 3 24

�16x3
�40x2

�48x+56
19 x12

�2x11 +6x10 +4x9 +6x8 +12x7
�4x6

�8x3 +16x2
�8 4 3 18

20 x12
�8x10

�28x8 +40x6
�44x4 +48x2 +40 4 3 33

21 x12 +8x10
�12x8

�24x6 +20x4
�16x2

�24 4 3 33
22 x12

�8x10
�28x8

�8x6 +20x4 +16x2
�24 4 3 33

23 x12 +4x10 +10x8
�8x6 +8x4 +32x2 +8 4 3 33

24 x12
�24x10 +52x8

�8x6 +20x4 +16x2 +40 4 3 33
25 x12 +28x10

�6x8 +40x6
�56x4

�32x2
�56 4 3 33

26 x12
�4x10 +26x8 +8x6

�24x4 +32x2 +8 4 3 33
27 x12 +36x10 +42x8

�40x6 +40x4 +32x2
�56 4 3 33

Lemma 1. Let L=Qp be a Galois extension with Galois group G, and let Gi denote
the i-th ramification group. Let p denote the unique maximal ideal of ZL and U0 the
units in L. For i � 1, let Ui = 1+pi.

(a) For i � 0, Gi=Gi+1 is isomorphic to a subgroup of Ui=Ui+1.
(b) The group G0=G1 is cyclic and isomorphic to a subgroup of the group of roots of

unity in the residue field of L. Its order is prime to p.
(c) The quotients Gi=Gi+1 for i � 1 are abelian groups and are direct products of

cyclic groups of order p. The group G1 is a p-group.
(d) The group G0 is the semi-direct product of a cyclic group of order prime to p

with a normal subgroup whose order is a power of p.
(e) The groups G0 and G are both solvable.
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Table 3 Polynomials for all degree 12 extensions of Q2 that have an automorphism group of order
6, including ramification index e, residue degree f , and discriminant exponent c.

Polynomial e f c

1 x12
�52x10 +20x8

�60x6
�32x4

�16x2
�48 3 4 8

2 x12 +80x10 +81x8
�160x6

�117x4 +80x2 +227 2 6 12
3 x12

�100x10
�59x8 +104x6 +387x4 +444x2 +439 2 6 12

4 x12
�200x10 +7956x8

�7360x6 +6192x4
�2176x2

�4672 2 6 18
5 x12

�864x10
�9916x8 +11008x6 +14512x4 +2560x2 +14528 2 6 18

6 x12
�108x10

�171x8 +344x6
�61x4 +468x2 +359 6 2 16

7 x12
�30x10

�5x8 +19x4 +30x2 +1 6 2 16
8 x12

�3x10 +4x8
�3x6 +4x4 + x2 +3 6 2 16

9 x12 +5x10 +4x8 + x6 +4x4 + x2 +3 6 2 16
10 x12

�12x10 + x8 +12x6 +15x4 +16x2 +15 6 2 16
11 x12 +7x10 +4x8 +3x6

�4x4
� x2

�5 6 2 16
12 x12 +20x10

�44x8
�4x6

�16x4
�48 6 2 16

13 x12 +4x10 + x8 +4x6
� x4 +8x2

�1 6 2 16
14 x12 +10x6 +12 6 2 22
15 x12 +2x6 +4 6 2 22
16 x12

�2x6 +4 6 2 22
17 x12 +14x6

�12 6 2 22
18 x12

�14x6
�12 6 2 22

19 x12 +12 6 2 22
20 x12 +14x6 +12 6 2 22
21 x12 +8x6

�4 6 2 22
22 x12

�6x6
�4 6 2 22

23 x12
�2x6

�4 6 2 22
24 x12

�4x11 +10x10
�6x8

�8x7 +12x6 +8x5 +8x4 +16x2 +8 4 3 24
25 x12 +12x11

�4x10 +4x9
�12x8 +4x6

�8x5
�4x4 +16x3 +8x2 +16x�8 4 3 24

26 x12 +12x10
�8x8 +12x6 +4x4

�8x2 +8 4 3 27
27 x12 +16x10 +8x8 +4x6

�12x4
�24x2

�24 4 3 27
28 x12 +32x10 +32x8

�4x6 +20x4 +8x2 +24 4 3 27
29 x12 +16x10 +16x8

�4x6
�12x4 +8x2

�8 4 3 27
30 x12 +8x10 +16x8

�4x6
�12x4 +8x2

�8 4 3 27
31 x12

�20x10 +32x8
�12x6

�28x4
�8x2 +24 4 3 27

32 x12 +4x10
�8x8 +12x6 +4x4

�8x2 +8 4 3 27
33 x12 +20x10

�24x8
�4x6 +4x4

�8x2
�24 4 3 27

34 x12 +6x11 +8x10
�52x9

�10x8 +24x7 +8x6 +64x5 +28x4
�40x3

�16x2 4 3 18
� 16x+40

35 x12 +12x11 +8x10 +4x9 +16x8
�12x7

�8x6 +8x5
�12x4 +16x3

�8 4 3 18
36 x12 +2x10

� x8 +2x6 +6x4
�4x2

�5 4 3 30
37 x12 +2x10

�11x8 +20x6 +31x4
�30x2

�5 4 3 30
38 x12 +2x10

� x8
�2x6 +2x4

�1 4 3 30
39 x12 +10x10

�99x8 +68x6 +79x4 +74x2 +67 4 3 30
40 x12

�62x10 +33x8 +948x6 +775x4 +162x2 +951 4 3 30
41 x12 +1858x10 +1509x8

�1436x6 +2047x4 +786x2 +203 4 3 30
42 x12 +18x10 +17x8

�28x6
�57x4 +34x2 +39 4 3 30

43 x12
�38x10

�87x8 +20x6
�41x4 +74x2 +95 4 3 30

44 x12 +24x10
�4x8

�28x4 +32x2 +24 4 3 33
45 x12 +18x8

�56x4 +40 4 3 33
46 x12 +8x10 +28x8 +24x6 +20x4

�16x2 +24 4 3 33
47 x12

�12x10 +6x8
�24x6

�24x4 +32x2
�8 4 3 33

48 x12
�8x10

�28x8 +4x4 +32x2 +8 4 3 33
49 x12 +24x10

�12x8 +64x6 +4x4 +32x2
�56 4 3 33

50 x12
�24x10

�10x8
�16x6 +8x4

�64x2 +56 4 3 33
51 x12

�14x8
�24x4

�24 4 3 33
52 x12 +6x8 +8x4

�8 4 3 33
53 x12 +8x10

�4x8 +48x6
�28x4

�40 4 3 33
54 x12 +28x10 +22x8 +24x6

�24x4 +32x2
�8 4 3 33

55 x12 +8x10 +28x8
�24x6 +20x4 +16x2 +24 4 3 33
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Applying this lemma to our scenario, where the polynomial f is chosen from Ta-
ble 2 or 3, K=Q2 is the extension defined by f , and G is the Galois group of f ,
we see that G is a solvable transitive subgroup of S12; of which there are 265 [20].
Furthermore, G contains a solvable normal subgroup G0 such that G=G0 is cyclic
of order dividing 12. The group G0 contains a normal subgroup G1 such that G1 is
a 2-group (possibly trivial), and G0=G1 is cyclic of order dividing 2[G:G0]

�1. Only
134 subgroups have the correct filtration. Moreover, since the automorphism group
of K=Q2 is isomorphic to the centralizer of G in S12, we need only consider those
subgroups of whose centralizer orders are 12 or 6.

Direct computation on the 134 candidates shows that 5 groups with centralizer
equal to 12 and 5 groups with centralizer order equal to 6 can occur as the Galois
group of f (note: there are 8 transitive subgroups of S12 with centralizer order equal
to 6, but only 5 have the correct filtration). We identify these groups in the table
below using the transitive numbering system first introduced in [7]. We also give
an alternative notation (in the second column), which is based on naming system
currently implemented in [8].

12T1 C12
12T2 C6C2
12T3 D6
12T4 A4
12T5 1=2[3 : 2]4
12T14 D4C3
12T15 1=2[3 : 2]dD(4)
12T18 [32]E(4)
12T19 [32]4
12T42 C6 oC2

4 Computation of Galois Groups

While most methods for the determination of Galois groups rely on the machinery
of resolvent polynomials [10, 23, 24], ours does not. Instead, we use the list of
the Galois groups of the Galois closures of the proper nontrivial subfields of the
extension. We call this list the subfield content of f .

Definition 2. Let f be an irreducible monic polynomial defining the extension
K=Q2 with Galois group G. Suppose K has s proper nontrivial subfields up to iso-
morphism. Suppose these subfields have defining polynomials f1; : : : ; fs. Let di de-
note the degree of fi and let Gi be the Galois group of fi over Q2. Then Gi is a
transitive subgroup of Sdi . Let ji denote the T -number of Gi (as in [8]). The subfield
content of f is the set

fd1T j1;d2T j2; : : : ;dsT jsg;

customarily sorted in increasing order, first by di, then by ji.

Example 1. For example, consider the first polynomial in Table 2, which defines
the unique unramified degree-12 extension of Q2. Thus the Galois group G of this
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polynomial is cyclic of order 12. Since the transitive group notation in [8] lists cyclic
groups first, the T -number of G is 12T1. By the fundamental theorem of Galois
theory, since G has a unique cyclic subgroup for every divisor of its order, f has
unique subfields of degrees 2, 3, 4, and 6. The Galois groups of these subfields are
cyclic, and thus the subfield content of f is f2T1, 3T1, 4T1, 6T1g.

Example 2. As another example, consider the 15th polynomial in Table 3, which is
f = x12 + 2x6 + 4. The stem field of f clearly has subfields defined by the polyno-
mials x6+2x3+4 and x4+2x2+4. Using [12], we see that the degree 6 polynomial
has Galois group 6T5 = C3 oC2 and the degree 4 polynomial has 4T2 = V4 as its
Galois group. Since V4 has three quadratic subfields, we know the subfield content
of f must contain the set f2T1, 2T1, 2T1, 4T2, 6T5g. Consulting Table 5, we see
that this set must be equal to the subfield content of f , as no other option is possible.
Notice this also proves that the Galois group of f is 12T18.

In general, to compute the subfield content of one of our polynomials f , we can
make use of the complete lists of quadratic, cubic, quartic, and sextic 2-adic fields
determined in [12] (these lists include defining polynomials along with their Galois
groups). For each polynomial in these lists, we can use Panayi’s p-adic root-finding
algorithm [16, 18] to test if the polynomial has a root in the field defined by f . If it
does, then this polynomial defines a subfield of the field defined by f . Continuing
in this way, it is straightforward to compute the subfield content of f .

We could also compute subfield content by realizing each degree 12 extension as
a quadratic extension of a sextic 2-adic field. This approach can reduce the number
of times Panayi’s root-finding algorithm is used to compute the subfield content.
Details of this approach can be found in [2].

The process of employing the subfield content of a polynomial to identify its
Galois group is justified by the following result.

Proposition 1. The subfield content of a polynomial is an invariant of its Galois
group (thus it makes sense to speak of the subfield content of a transitive group).

Proof. Suppose the polynomial f defines an extension L=K of fields, and let G de-
note the Galois group of f . Let E be the subgroup fixing L=K, arising from the
Galois correspondence. The nonisomorphic subfields of L=K correspond to the in-
termediate subgroups F , up to conjugation, such that E  F  G. Furthermore, if
K0 is a subfield and F is its corresponding intermediate group, then the Galois group
of the normal closure of K0 is equal to the permutation representation of G acting
on the cosets of F in G. Consequently, every polynomial with Galois group G must
have the same subfield content, and this quantity can be determined by a purely
group-theoretic computation. ut

Therefore, if we know that the Galois group of a polynomial f must be contained
in some set S of transitive subgroups, and if the subfield contents for the groups in S
are all different, we can uniquely determine the Galois group of f by computing its
subfield content and matching it with its appropriate Galois group’s subfield content.
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In light of this observation, our approach for determining the Galois groups of the
polynomials in Tables 2 and 3 involves three steps: (1) compute the subfield content
for each of the possible 10 Galois groups mentioned at the end of Section 3; (2)
compute the subfield content for each of the 82 polynomials under consideration;
(3) match up the polynomial’s subfield content with the appropriate Galois group’s
subfield content to determine the Galois group of the polynomial.

Table 4 shows the subfield content for each transitive group of S12 whose cen-
tralizer order is 12. The final column gives the row numbers of all polynomials in
Table 2 that have the corresponding Galois group. Similarly, Table 5 shows the sub-
field content for each transitive subgroup of S12 whose centralizer order is 6. The
final column in this table references row numbers of polynomials in Table 3. In each
table, the entries in column Subfields was computed with [8].

Table 4 Subfield content for transitive subgroups of S12 that have centralizer order 12. The Poly-

nomials column references row numbers in Table 2; the corresponding polynomials have the indi-
cated Galois group.

T Subfields Polynomials

12T1 2T1, 3T1, 4T1, 6T1 1, 3, 7, 8, 20, 21, 22, 23, 24, 25, 26, 27
12T2 2T1, 2T1, 2T1, 3T1, 4T2, 6T1, 6T1, 6T1 4, 5, 6, 15, 16, 17, 18
12T3 2T1, 2T1, 2T1, 3T2, 4T2, 6T2, 6T3, 6T3 9, 11, 13
12T4 3T1, 4T4, 6T4 19
12T5 2T1, 3T2, 4T1, 6T2 2, 10, 12, 14

Table 5 Subfield content for transitive subgroups of S12 that have centralizer order 6. The Poly-

nomials column references row numbers in Table 5; the corresponding polynomials have the indi-
cated Galois group.

T Subfields Polynomials

12T14 2T1, 3T1, 4T3, 6T1 2, 3, 4, 5, 24, 25, 26, 27, 28, 29, 30, 31, 32
33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44
45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55

12T15 2T1, 3T2, 4T3, 6T2 6, 11, 19, 21
12T18 2T1, 2T1, 2T1, 4T2, 6T5 7, 15, 16
12T19 2T1, 4T1, 6T5 1, 12, 17, 18
12T42 2T1, 4T3, 6T5 8, 9, 10, 13, 14, 20, 22, 23

As a final note, we can compute subfield content for the remaining 124 transitive
subgroups of S12 that are possible Galois groups of degree 12 2-adic fields. Except
for the unique group with centralizer order equal to 3 and a few groups with cen-
tralizer equal to 4, none of these groups can be distinguished solely by their subfield
content. A complete description of subfield contents for the remaining 124 transitive
groups of S12 can be found in [2]. Identifying the Galois groups of the remaining
5411 degree 12 2-adic fields from among these groups requires other methods and
is the subject of ongoing research.
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donné d’un corps local, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 22, A1031–A1036.
MR 500361 (80a:12018)



10 Chad Awtrey and Christopher R. Shill

22. , Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York,
1979, Translated from the French by Marvin Jay Greenberg. MR 554237 (82e:12016)

23. Leonard Soicher and John McKay, Computing Galois groups over the rationals, J. Number
Theory 20 (1985), no. 3, 273–281. MR MR797178 (87a:12002)

24. Richard P. Stauduhar, The determination of Galois groups, Math. Comp. 27 (1973), 981–996.
MR 0327712 (48 #6054)


