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Computing Galois groups of Eisenstein polynomials over p-adic
fields

Chad Awtrey, Jonathan Milstead, and Sebastian Pauli

Abstract

We present a degree independent algorithm for computing Galois groups of Eisenstein poly-

nomials over p-adic fields that combines the ramification polygon approach and resolvent

methods.

1. Introduction

The most e�cient algorithms for computing Galois groups of polynomials over global fields
are based on Stauduhar’s relative resolvent method [25][9][7]. These methods are not directly
generalizable to the local field case, since they require a field that contains the global fields in
which all roots of the polynomial can be approximated.
Let Qp be the field of p-adic numbers, K a finite extension of Qp, ' 2 K[x] Eisenstein, and ↵

a root of '. We present an algorithm that determines the Galois group Gal(K(↵)/K) = Gal(')
that is the automorphism group Aut(N/K) of the normal closure N of K(↵)/K.
Previous algorithms for computing Galois groups of local fields were restricted either to

extensions of low degree (up to 14) or to polynomials of special form. Algorithms for degrees
up to 11 were given by Jones and Roberts [16][17][15] and were followed by methods for
polynomials of degree 12 and 14 by Awtrey and others [1][2][3][5]. All these use a variety
of criteria for narrowing down the possible Galois groups, including information about the
ramification filtration and absolute resolvents. The algorithms for computing Galois groups of
Eisenstein polynomial make use of the the information contained in the ramification polygon,
that is the Newton polygon to obtain information about the splitting field of '. Romano [23]
describes Gal(�) for Eisenstein polynomials ' where R(') has one segment and the only points
on the segments are the endpoints. The algorithm by Greve and Pauli [11] very e�ciently
returns the Galois group of polynomials where R(') consists of one segment. In his thesis
[10] Greve builds on this approach to give and algorithm for Eisenstein polynomials whose
ramification polygon consists of two segments.

Our Algorithm

We combine ideas from all the above approaches in an algorithm that determines the Galois
group Gal(') = Gal(K(↵)/K) of an Eisenstein polynomial '. An essential additional ingredient
is the tower of subfields that corresponds to the ramification polygon of ' [11]. In the remainder
of this paper we will fill in the details of the following algorithm:

Algorithm 1.1 GaloisGroup.

Input: ' 2 OK [x] Eisenstein
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Output: Gal(')

(1) G = {id}.
(2) Find the tower of subfields K = L`+1 ✓ L` ⇢ L`�1 ⇢ . . . L1 ⇢ L0 = K(↵) correspond-

ing to the ramification polygon of ' such that the ramification polygon of Li/Li+1

(0  i  `) consists of one segment.
(3) For i from ` to 0 by �1:

(a) Determine Gal(Li/Li+1).
(b) Find a small set G of subgroups of Gal(Li/Li+1) oG that contains the Galois group

of Li/K.
(c) If #G 6= 1 use relative resolvents to determine the G 2 G that is the Galois group

of Li/K.
(4) Return G.

In section 2 we recall the results about the existence of such a tower of subfields of K and
describe a method for computing generating polynomials for the relative extensions in the
tower. The ramification polygon of these polynomials consists of one segment and their Galois
groups can be e�ciently computed with the methods from [11] (section 3). In Algorithm 1.1
we iteratively compute Galois groups of towers of extensions consisting of an extension whose
generating polynomial has a ramification polygon consisting of one segment over an extension
with a known Galois group. The Galois group of the tower is contained in the wreath product
of the two Galois groups. In section 4 we give criteria that a subgroup of the wreath product
must meet in order to possibly be the Galois group of the tower and find that these narrow
the number of possible groups considerably. If more than one candidate group is left we use
relative resolvents (section 5) to determine the Galois group. Our algorithm is illustrated with
some examples in section 6.

Notation

We denote byQp the field of p-adic numbers and by vp the (exponential) valuation normalized
such that vp(p) = 1. By K we denote a finite extension of Qp, by OK the valuation ring of K,
and by ⇡ a uniformizer of OK . We write vK for the valuation of K that is normalized such
that vK(⇡) = 1 and also denote the unique extension of vK to an algebraic closure K of K
(or to any intermediate field) by vK . Fractions are always assumed to be in lowest terms. For
� 2 OK we denote by � the class � + (⇡) in K = OK/(⇡).

2. Ramification Polygons and Subfields

Let ' 2 OK [x] be Eisenstein of degree e0p
m where gcd(p,m) = 1, ↵ a root of ' and

L = K(↵). The ramification polygon R(') of ' is the Newton polygon of the ramification
polynomial ⇢(x) = '(↵x+ ↵)/(↵n) 2 K(↵)[x] of ', where ↵ is a root of '. The ramification
polygon R(') of ' is an invariant of L/K called the ramification polygon of L/K denoted by
R(L/K). The general shape of a ramification polygon of an Eisenstein polynomial is given in
Figure 1, see for example [11].
The ramification data obtained from slopes of the segments of the ramification polygon is

complemented by the data obtained from the residual (or associated) polynomials that were
introduced by Ore [20].

Definition 2.1. Let L be a finite extension of Qp with uniformizer ↵. Let ⇢(x) =
P

i ⇢ix
i 2

OL[x]. Let S be a segment of the Newton polygon of ⇢ of length l with endpoints (k, v↵(⇢))
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Figure 1. Ramification polygon of an Eisenstein polynomial ' of degree n and discriminant
(⇡)n+J0�1 with `+ 1 segments and u� 1 points on the polygon with ordinate above 0.

and (k + l, v↵(⇢k+l)), and slope �h/e = (v↵(⇢k+l)� v↵(⇢k)) /l then

A(x) =

l/eX

j=0

⇢je+k↵
jh�v↵(⇢k)xj 2 K[x]

is called the residual polynomial of S.

While the residual polynomials of the segments of the ramification polygon are not invariants
of the extension generated by an Eisenstein polynomial they are representatives of the residual
polynomial classes which are invariants of the extension [22].
Now let S1, . . . ,S`,S`+1 be the segments of the ramification polygon R of ' where S`+1

may have length 0. Denote by by ��1 < · · · < ��`+1 = 0 the slopes of the segments, and by
A1, . . . , A` their residual polynomials (see Figure 1). The Galois group of ' has the blocks [11,
Lemma 5.2]

�i = {↵02 K : '(↵0) = 0 and ⌫L(↵
0 � ↵1) � �i + 1} (1  i  `).

We can order the roots ↵1, . . . ,↵n such that

�(r)
i =

�
↵(r�1)psi+1, . . . ,↵rpsi

 
(2.1)

for 1  r  k and k = n/psi . Similarly to the normal case these blocks correspond to a tower
of subfields as illustrated in Figure 2 [11, Theorem 5.4]. Each relative extension in the tower
has a ramification polygon consisting of one segment:

Theorem 2.2 [11, Theorem 6.2]. For 1  i  `+ 1 the ramification polygon R(Li�1/Li)
consists of exactly one segment, which corresponds to the segment Si of R(L/K) as follows:
(a) The slope of R(Li�1/Li) is equal to the slope of Si.
(b) For each root � of the residual polynomial Ai(y) of Si the element �p

si�1
is a root of the

residual polynomial of R(Li�1/Li).
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Figure 2. Subfields of L = K(↵1) and the corresponding blocks, where the roots of
↵1, . . . ,↵n of ' 2 OK [x] are ordered as in Equation (2.1) and n = e0p

` with p - e0.

Next we describe how to compute the tower of extensions L0 � L1 � · · · � Lm = K
where m = ` or m = `+ 1 (compare [10, Algorithmus 4.3 and Algorithmus 4.5]). Since
the ramification polygon R(') of ' is the Newton polygon of the ramification polynomial
⇢(x) = '(↵x+ ↵)/↵n 2 K(↵)[x] it yields a factorization ⇢ = ⇢1 · ·⇢m of ⇢ over K(↵) where for
1  i  m the factor ⇢i corresponds to the i-th segment of R('). Over K(↵) we obtain the
factorization ' = '1 · · · · · 'm where

'i(x) = ↵deg ⇢i⇢i

✓
x� ↵

↵

◆
.

Now let  =
Qm�1

i=1 'i. The minimal polynomial µ 2 OK [x] of the constant coe�cient ↵1 ·
· · · · ↵ps

m�1
. of  generates L` = K(↵1 · · · · · ↵ps

m�1
) over K. We continue this process with  2

Lm�1[x] whose ramification polynomial has m� 1 segments until we have reached L0 = K(↵1).
The ramification polygon and its residual polynomials also yield further information about

the structure of the splitting field of '.

Theorem 2.3 [11, Theorem 7.4]. Let '(x) = xn +
Pn�1

i=0 'ix
i 2 OK [x] be Eisenstein of

degree n = e0p
m with p - e0 and m > 0. Assume the ramification polygon R(') of ' consists

of `+ 1 segments S1, . . . ,S`+1. For 1  i  ` let
– mi = �hi/ei be the slope of Si with gcd(hi, ei) = 1 = diei + bihi for di, bi 2 Z,
– Ai(y) 2 OL[y] be the residual polynomial and fi the degree of the splitting field of Ai over
K,

– �i 2 K such that Ai(�i) = 0, and
– vi = e0 · pm�si�1 + n+ 1.

Moreover we denote by I the unramified extension of K of degree

f = lcm(f1, . . . , f`, [K(⇣e1e0) : K], . . . , [K(⇣e`e0) : K]) (2.2)

and by N the splitting field of '. Let ↵ be a root of ' and K(↵) = L0 � L1 � · · · � L` � K
as in Figure 2 be the tower of subfields corresponding to R('). Then:
(a) The field

T = I

✓
e1e0

q
(�1)v1�b1n1 '0, . . . ,

e`e0

q
(�1)v`�b`n` '0

◆

is a subfield of N/K, such that N/T is a p-extension.
(b) For 1  i  `� 1 the extensions TLi�1/TLi are elementary abelian.
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(c) The extension T/K is Galois and tamely ramified with ramification index e0 ·
lcm(e1, . . . , e`). Furthermore [T : K] < n2.

When working with the global representation in section 5 we can compute with a lower
precision if the coe�cients of the generating polynomials are smaller, using ideas from Monge’s
reduction [19].

Lemma 2.4 [22, Lemmata 5.4 and 5.7]. Let ' 2 OK [x] be Eisenstein of degree n with root
↵ let ⇢ 2 OK(↵)[x] be its ramification polynomial, and let

R = {(1, J0), (ps1 , J1), . . . , (psu�1 , Ju�1), (p
su , 0), . . . , (n, 0)}

its ramification polygon. Denote by �R : R>0 ! R

>0, � 7! min0iu{ 1
n (Ji + �psi)} the Hasse-

Herbrand function of R and for m 2 Z

>0 let

Sm(x) = ⇢(↵mx)/ cont↵(⇢(↵
mx)) 2 K[x]

where cont↵(⇢(↵mx)) is the largest power pf ↵ that divide all coe�cients of ⇢(↵mx).
(i) If R has a segment S of integral slope �m 2 Z, with left endpoint (k, w) and residual

polynomial A then Sm(x) = xkA(x).
(ii) If R has no segment of slope �m 2 Z then Sm(x) = xps

where 0  s  vp(n) such that
v(⇢ps) + ps ·m = min0rvp(n) v(⇢pr ) + pr ·m.

(iii) If there is m 2 Z

>0 such that k ⌘ n�R(m) mod n, j = n+n�R(m)�k
n , and Sm : K ! K

is surjective then there is an Eisenstein polynomial

 (x) =
nX

i=0

xi
1X

l=0

 i,l⇡
l 2 OK [x]

with  k,j = 0 such that K[x]/( ) ⇠= K(↵).

3. Ramification Polygons with one Segment

If the ramification polygon of an Eisenstein polynomial consists of one segment, then we can
explicitly give its Galois group. In particular if the segment is horizontal we have a tamely
ramified extension and its Galois group is well known.

Theorem 3.1 (see for example [10, Satz 3.2 and Satz 3.6]). Let ⇣ denote a primitive
(qf � 1)-st root of unity, where q = |K|, and let L = K(⇣, e

p
⇣r⇡) be tamely ramified. Let

g = gcd(qf � 1, r(q � 1)) and u 2 Z

>0 minimal such that qfu � 1 ⌘ 0 mod (e(qf � 1)/g). Let
⇠ be a primitive (qfu � 1)-st root of unity and s = r(qfu � 1)/(qf � 1). Then

N = K(⇠, e
p
⇠s⇡)

is the normal closure of L/K, with Galois group hx, y : xe = 1, yfu = xs, xy = yxqi.

If the degree of ' is a power of p and the ramification polygon consists of one segment the
slope of the segment and its residual polynomial determine the splitting field of '.

Theorem 3.2 [11, Theorems 7.3 and 8.2]. Let ' 2 OK [x] be an Eisenstein polynomial
of degree n = pm and assume that its ramification polygon R(') consists of one segment of
slope �h/e where gcd(h, e) = 1 = ae+ bh for a, b 2 Z. Let ↵ be a root of ', L = K(↵) and let
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A(y) 2 L[y] be the residual polynomial of R(') and let f be the degree of the splitting field of
Ar 2 K[y] over K. Let I/L be the unramified extension of degree lcm(f, [L(⇣e) : L]) where ⇣e
is a primitive e-the root of unity. Choose an " 2 K with A(") = 0.

(i) N = I
⇣

e
p
"b↵

⌘
is the splitting field of '.

(ii) Gal(') = G1 oH, where G1 is the first ramification group and H corresponds to the
maximal tamely ramified subfield of the splitting field of '

(iii) Gal(') is isomorphic to the group

eG = {ta,v : (Fp)
m ! (Fp)

m : x 7! xa+ v | a 2 H 0  GL(m, p), v 2 (Fp)
m}

of permutations of the vector space (Fp)m, where H 0 describes the action of H on
⇥h(Gh/Gh+1)  }h/}h+1 (see definition above).

For an algorithm for computing the Galois group of Eisenstein polynomials whose
ramification polygon consists of one segment see [10, Algorithmus 6.1].

4. Candidates for Galois Groups

In this section we describe several criteria that have to be met for a group to be a Galois
group over a p-adic field. As it is a Galois group it has to be transitive. From the ramification
filtration we know that it has to be solvable and obtain a few more criteria. Further criteria can
be obtained from a concrete polynomial by computing its automorphism group, considering
certain absolute resolvents, and the subfield structure of the polynomials in our algorithms.

Automorphism Groups of Subfields

As the degree of K(↵) is relatively small and root finding in local fields is e�cient [21] we
can e�ciently compute the automorphism group of K(↵)/K which yields some information
about Gal('). A similar result also holds for other subfield of the splitting field.

Theorem 4.1 [4, Theorem 3.6]. Let ' 2 OK [x] be irreducible of degree n and ↵ a root of '
in some algebraic closure of K. Let L = K(↵) and G = Gal('). Then Aut(L/K) ⇠= CenSn(G),
where CenSn(G) is the centralizer of G in Sn.

Proposition 4.2 [4, Proposition 2.6]. Let G = Gal(L/K) and let J be a subgroup of G
that fixes some subfield M of the normal closure of L/K, then Aut(M/K) ⇠= NorG(J)/J where
NorG(J) is the normalizer of J in G.

Resolvents

Resolvents are the method of choice for determining Galois groups over global fields. In this
section we use two specific absolute resolvents to reduce the number of candidate groups. In the
next section we use relative resolvents to find the Galois group among the candidate groups.

Definition 4.3. Let ' 2 OK [x] be a polynomial with roots ↵1, . . . ,↵n in some algebraic
closure. Let H < G be subgroups of Sn acting on {x1, . . . , xn} with Gal(')  G. Let G//H
denote a set of representatives of right cosets of G/H. If F 2 OK [x1, . . . , xn] satisfies H =
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StabGF then

RF (t) =
Y

�2G//H

(t� F (↵�(1), . . . ,↵�(n))) 2 Z[t]

is called the relative resolvent polynomial corresponding to H < G. If G = Sn, we call the
resolvent polynomial an absolute resolvent.

With the following theorem, given for polynomials over the integers in [24], we obtain
information about the Galois group from the resolvent.

Theorem 4.4. Using the notation of the preceding definition, set m = [G : H] = degRF .
Then, if RF is squarefree, its Galois group (as a subgroup of Sm) is equal to ⌧(Gal(')), where
⌧ is the natural group homomorphism from G to Sm given by the natural right action of G on
G/H. In particular, the list of the degrees of the irreducible factors of RF in OK [x] is the same
as the list of the orbit lengths of the action of ⌧(Gal(')) on {1, . . . ,m}. In particular, RF has
a root in OK if and only if Gal(') is contained in a conjugate of H.

When RF is not squarefree there is a Tschirnhausen transformation on ' resulting in a
polynomial  such that RF with respect to  is squarefree. The degrees of the irreducible
factors of RF 2 OK [x] are e�ciently obtained with an OM-algorithm, see for example [13].
Note that one does not need to derive a complete factorization, so that the lifting step described
in [14] can be omitted.

For checking whether a group can be the Galois group of ' 2 OK [x] we use the following
two absolute resolvents. In the last step of each iteration we use relative resolvents we find the
Gal(') among the candidate groups.

Let disc (') denote the discriminant of '. Then

R(t) = t2 � disc (') (4.1)

is a resolvent for H = An, G = Sn. Thus Gal(')  An if and only if vK(disc (')) is even.
The following polynomial is a resolvent for the group pair H ⇠= S2 ⇥ Sn�2 and G = Sn:

R2(t) =
Y

1i<jn

(t� ↵i � ↵j). (4.2)

To avoid errors from approximating the roots of ', we obtain R2 from the resultant
resx('(t),'(x+ t))/tn by halving all the exponents.

Tower of Two Extensions

Let L1 ⇢ L0 = K(↵). Denote by N the normal closure of L/K and by N1 the normal closure
of L1/K. Let T1 be the maximal tamely ramified subextension of N1/K and let T0 be the
maximal tamely ramified subextension of the normal closure of L0/L1. We assume that T1 and
the Galois group Gal(L1/K) = Aut(N1/K) are known. Theorem 2.3 yields T0 and section 3
yields Gal(L0/L1). A lattice of subfields of N/K is given in Figure 4.

In the following we view the (complete) wreath product as a permutation group. In particular,
the wreath product H oG has imprimitive action on the Cartesian product of the G-sets of the
constituent groups.

Theorem 4.5 [18]. Let K ⇢ L ⇢ M be finite separable field extensions. Then Gal(M/K)
can be embedded into Gal(M/L) oGal(L/K),
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In our case we have that Gal(L0/K) is isomorphic to a subgroup of Gal(L0/L1) oGal(L1/K).
Since Gal(L0/L1) and Gal(L1/K) are solvable all subgroups of Gal(L0/L1) oGal(L1/K) are
solvable.

Proposition 4.6. Let T as in Figure 4 and W = Gal(L0/L1) oGal(L1/K). If H  W is
the Galois group of L0/K then

(i) H is transitive,
(ii) #H = [TN1 : K] · pw for some vp([TN1L0 : TN1])  w  e0 · [N1 : T1] · vp([TN1L0 :

TN1]),
(iii) if vK(disc (L0/K)) is even then H < An,
(iv) Aut(L0/K) ⇠= CenSn(H),
(v) the list of the degrees of the irreducible factors of R2 from Equation 4.2 over OK [x] is

the same as the list of the orbit lengths of the action of ⌧(H) on {1, . . . , n(n� 1)/2}
where ⌧ is the permutation representation of H acting on the cosets Sn/(S2 ⇥ Sn�2).

Proof. (i) follows from Galois theory. (iii) and (v) follow with the resolvents from Equations
4.1 and 4.2 from Theorem 4.4. For (iv) see Theorem 4.1.
(ii) Let '0 2 L1[x] be the generating polynomial of L0/L1. TN1/K is normal. We obtain

the normal closure of TN1L0/K as the composite of the conjugates of TL0N1 over TN1. The
polynomial '0 2 L1[x] it is fixed by the automorphisms of T/K, except for e0 conjugates if
[L1 : K] is not a power of p. Thus we only need to consider the conjugation of '0 over N1/T1L1

and L1/K and possible e0 conjugates over T and the number of conjugates is at least 1 and
at most e0[N1 : T1].

As [TN1L0 : TN1]  ps1 an initial upper bound for [N : K] is [N1 : K][T : T1]ps1w by Propo-
sition 4.6(ii). The test Proposition 4.6(v) is cheap as long as no Tschirnhausen transformation
has to be used. We suggest using it early on in the filtering of groups if this is the case and
later if a Tschirnhausen transformation is needed.
Since the fields in the subfield lattice of the splitting field of ' (Figure 4) correspond to

subgroups of Gal(') = Gal(L0/K), this helps us elimanate further candidate groups.

Proposition 4.7. Let T as in Figure 4 and G = Gal(L0/L1) oGal(L1/K). If H  G is the
Galois group of L0/K then then there are subgroups B1, B, C,D1, D0 of H such that

(vi) B1 EH with H/B1
⇠= Gal(T0/K),

(vii) B EH with B  B1 and H/B ⇠= Gal(T/K),
(viii) C EH with C < B1 and H/C ⇠= Gal(L1/K),
(ix) C/(B \ C) ⇠= Gal(T/T1),
(x) D1 < H with [H : D1] = [L1 : K],
(xi) D1/(B1 \D1) ⇠= Gal(T1/K) and (B1 \D1)/(B \D1) ⇠= Gal(T/K),
(xii) D0 ED1 with D1/D0

⇠= Gal(L1/L0) = Aut(T0L1/L0),
(xiii) (B \D0)/(B \D1) ⇠= (Z/pZ)s1 ,
(xiv) (B \ C)/(B \ C \D0) is an elementary abelian p-group of order at most ps1 ,
(xv) Aut(TL0/K) ⇠= NorH(B \D0)/(B \D0).

Proof. (vi) to (xii) follow from Figure 4 and Galois theory. (xiii) is a consequence of Theorem
2.3(b). (xiv) holds, since by Theorem 2.3 Gal(TL0/TL1) is elementary abelian of order ps1 and
TN1L0 = TL0 · TN1 and thus the extension TN1L0/TN1 is elementary abelian and its order
divides ps1 . (xv) follows from Proposition 4.2.
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elem.ab.ps1

ps1

pw1ps1

pw1

e0ps`�s1

ps`�s1

p?

ps`�s1ps`�s1

pw1

elem.ab.ps1

TL1 = Fix(B \D1)

TL0 = Fix(B \D0)

T = Fix(B)

K = Fix(H)

TN1 = Fix(B \ C)

T0L0 = Fix(D0)

T0L1

T0 T1 = Fix(B1)

T1L1 = Fix(B1\D1)L0

L1 = Fix(D1)

N1 = Fix(C)

N = Fix({id})

TN1L0 = Fix(B \ C \D0) TN1L0
0

. . .

Figure 3. (Incomplete) subfield lattice of the normal closure N of L0/K. The fields L0 and
L1 are as in Figure 2, N1 is the normal closure of L1/K and T1 is the maximal tamely

ramified normal subextensions of N1. T0L0/L1 is the normal closure of L0/L1 with maximal
tamely ramified subextension T0L1/L1 (see Theorem 3.2). The maximal tamely ramified

subextension of N/K is T from Theorem 2.3. The fields TN1L
(1)
0 = TN1L0 to TN1L

(m)
0 are

the conjugates of TN1L
(1)
0 = TN1L0 over TN1. The groups B, B1, C, D0, and D1 are as in

Proposition 4.7. Fields in rectangles are explicitly known, shaded fields are normal over K.
Solid lines denote normal tamely ramified extensions and dashed lines normal p-extensions.
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5. Relative resolvents

In this section, we assume the circumstances and notation from section 4. Specifically, we
assume that we have used the methods of the previous section to eliminate possible Galois
groups for L0/K and have failed to uniquely identify the group. At this stage of the algorithm,
we will rule out the other candidate groups by using relative resolvents.
Because relative resolvents rely on the ordering of the polynomial’s roots we must explore

block matching. We also need a field over which the polynomial � is square free and splits into
linear factors. We find a tower L⇤

0 � L⇤
1 � K⇤ of global fields that corresponds to our tower

of fields L0 � L1 � K, such that the generating polynomials of the global extensions generate
the local extensions. We find a completion K⇤

q of the global field K⇤ in which the generating
polynomial  of L⇤

0/K
⇤ is square free and splits into linear factors. Over K⇤

q we compute the
resolvent, which has coe�cients in K⇤.

Block Matching

At this point in our algorithm, we have an upper bound group W that contains Gal(L0/K).
In order to accurately reflect this containment, the roots of our polynomial must be ordered
to match the blocks from the wreath product W .
To facilitate finding the blocks corresponding to the subfield structureK ⇢ L1 ⇢ L0 = K(↵),

we construct a global representation following the approach described in [15]. Let � 2 Z[x] be
a polynomial that generates K/Qp and set K⇤ = Q[x]/(�). We let '1(y) be a polynomial so
that L1 = K[y]/'1(y) and write the defining polynomial of L0/L1 as '0(x, y) 2 K[y][x]. Then
we have  (x) = resy('0(x, y),'1(y)). By construction, Gal( ) over K, will be isomorphic to
Gal(L0/K). Thus we can restrict ourselves entirely to finding Gal( ). In other words,  replaces
our polynomial and the blocks will be of the roots �i of  .
We find a prime ideal q so that the factorization of  2 K⇤[x] is squarefree modulo q. Then

we find the lcm of the degrees of the irreducible factors and form the unramified extension ofK⇤
q

of that degree. This approach is given in more detail and a proof is provided in [9]. Considering
 over this extension we can approximate all the roots and give them some arbitrary ordering.
F inally, by forming the global field K⇤[x]/( ), we can use the following theorem to find the
blocks for our subfield structure:

Theorem 5.1 [8, Satz 5.2]. Let R be an integral domain with 1 and F its field of fractions.
Let E1 = F (�) and E0 = F (↵) with Q ✓ E1 ✓ E0 and �1, � 2 R[x] be the minimal polynomials
of � and ↵, respectively. Let ! 2 R[x] be the embedding polynomial with !(↵) = �. Denote the
conjugates of ↵ and � in some algebraic closure of F by ↵1, . . . ,↵n and �1, . . . ,�m, respectively.
Defining �i = {↵j : !(↵j) = �i} it follows:

(i) �1, . . . ,�m form a block system of Gal(�). Furthermore, n = m#�i.
(ii) Gal(�1) = Gal(E1/F ) is isomorphic to the permutation representation of Gal(�) =

Gal(E0/F ) with respect to �1, . . . ,�m under the mapping ✓ : �i 7! �i.

Next, we determine the permutation � that maps the block system �i to the block system
of the wreath product. Our root approximations are then re-ordered using � so that they may
be used in forming relative resolvents.

Stauduhar’s Method

To implement Stauduhar’s method [25], we enumerate conjugacy classes of maximal
subgroups of W that match all criteria in Propositions 4.6 and 4.7, and we pick one
representative from each conjugacy class; let J denote this collection of representatives, ordered
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by size so that #J1 � #J2, . . ., for each Ji 2 J. For a given J 2 J, we compute a multivariable
polynomial F whose stabilizer in W is J .
As in Definition 4.3, we can form the relative resolvent polynomial RF (x) corresponding to

J ; that is,

RF (x) =
Y

�2W//J

(x� F (↵�(1), . . . ,↵�(n)))

where the ↵i are roots of  and W//J denotes a complete set of right coset representatives of
W/J . We then factor R(x) over K. If A(x) is an irreducible factor of R(x), say of degree m,
then there exist elements �1, . . . ,�m such that

A(x) =
mY

i=1

(x� F (↵�i(1), . . . ,↵�i(n))).

If B denotes the set of right cosets {J�i : 1  i  m}, then Gal( )  ⌧�1(Stab⌧(W )(B)) (see
[7, Thm. 3.2]). Consequently, we have the following two observations:
(1) Suppose RF has a linear factor over K, of the form x� F (↵�(1), . . . ,↵�(n)). Then

Gal( )  ��1J�.
(2) More generally, if RF factors as A1 · · ·Ak and let Bi denote the right cosets of W/J

corresponding to Ai. Then

Gal( ) 
k\

i=1

⌧�1(Stab⌧(W )Bi).

In the traditional Stauduhar approach, if RF does have a linear factor (corresponding to
some maximal subgroup J of W ), we repeat the above process but with W replaced by the
appropriate conjugate ��1J�. Otherwise, if no resolvent has a linear factor, then Gal( ) = W .
Ideally, one determines the appropriate conjugate of J by testing each root of the resolvent,

checking if it defines a p-adic integer. This would be straightforward if we approximated the
roots as p-adic numbers. Unfortunately, we are approximating the roots in a di↵erent field.
Since it is very di�cult to determine if a number in a p-adic field is close to a number in a
q-adic field, we don’t faithfully adhere to the traditional Stauduhar method. In other words,
we don’t determine the conjugate and continue descending to the Galois Group.
Instead, we use relative resolvents to eliminate the candidate groups. We form a relative

resolvent for the starting group and one of the candidate groups J . If we find that our relative
resolvent has a simple root in our p-adic integer ring, then we can safely eliminate all candidates
that have greater order than J . We proceed with this approach until only one group remains.
In the case that the starting group W is a candidate left over from our filtering, we test it first

and separately. We form relative resolvents, as needed, for W and its maximal subgroups. If
we determine that one of the resolvents has a simple root in Zp then we rule the starting group
out and continue on to other candidate groups. If none of these resolvents have a simple root
then none of the maximal subgroups or their conjugates contain the Galois Group, implying
that W is the Galois Group.

Relative Resolvents and Orbit Length

While the traditional Stauduhar approach is guaranteed to work, there is a way to decrease
the number descents taken. We propose the following modifications, which leverage the rich
structure of Galois groups of local fields laid out in Propositions 4.6 and 4.7. Our modifications
also aim to make use of other resolvent polynomials of low index, which can yield more
information concerning Gal( ).
First, we compute representatives Hi for each transitive subgroup of Sn contained in W ,

not just the maximal ones. Note, we only include those that satisfy Propositions 4.6 and
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4.7. Second, suppose the smallest maximal transitive subgroup of W has index k. We then
compute a representative Jj for each conjugacy class of subgroups of index  k. For each Hi

and each Jj , we compute the orbit lengths of the permutation representation of Hi acting on
the cosets W/Jj ; these orbit lengths are the same as the degrees of the irreducible factors of
the relative resolvent polynomial corresponding to Jj . It is possible that one or more low-index
subgroups give rise to orbit-length partitions that uniquely identify the Galois group. In this
case, we compute and factor the corresponding relative resolvent(s). Otherwise, if the low-index
subgroups do not yield enough information to completely identify G (i.e., they all have the
same partitions), we proceed with the traditional Stauduhar approach.

6. Examples

We have implemented our algorithm in Magma [6]. The degrees of the irreducible factors
of the resolvent polynomials over Qp is computed with the OM algorithm from the Ideals+
package for Magma [12]. For the compuation of the invariant W relative H invariants we call
the functions from the implementation of [7].

Example 6.1. We illustrate the e↵ectiveness of the filtering criteria by giving the number
of candidate groups after filtering the subgroups of Gal(L0/L1) oGal(L1/K) using the criteria
from Propositions 4.6 and 4.7. When the Galois group is determined unquely by the criteria,
it is listed in the table.

n = Gal Gal number of groups after criterion Gal

K ' e0p
s` ps1 L0/L1 L1/K (i) (ii) (iii) (iv) (vi,vii) (viii) (ix) (x-xii) (xiii,xiv) (v) (xv) L0/K

Q2 '8a 8 4 A4 C2 11 4 4 2 1 1 1 1 1 1 1 8T33

Q2 '8b 8 2 C2 S4 36 10 4 4 3 3 3 3 3 3 2

Q2 '8c 8 2 C2 D4 26 26 14 2 2 1 1 1 1 1 1 8T17

Q2 '8d 8 2 C2 D4 26 26 14 11 11 11 11 11 11 8 7

Q2 '12a 12 4 S4 S3 153 17 10 10 1 1 1 1 1 1 1 12T254

Q2 '16 16 4 A4 A4 1810 259 210 54 34 34 34 34 34 12 12

Q3 '6 2 · 3 3 A3 C2 3 3 3 1 1 1 1 1 1 1 1 6T2

Q3 '9a 9 3 S3 S3 23 10 5 5 5 5 5 5 5 3 3

Q3 '9b 9 3 S3 S3 23 7 5 5 3 3 3 3 3 2 2 9T24

Q3 '12b 12 3 C3 D4 21 7 7 3 3 3 3 3 3 3 3

Q3 '18a 2 · 9 3 A3 6T2 23 23 23 3 3 3 3 3 3 3 3

Q3 '18b 18 9 9T19 C2 119 29 24 24 1 1 1 1 1 1 1 18T476

Q3 '27b 27 3 S3 M9 279 40 29 28 12 12 12 12 12 11 11

Q5 '25 25 5 C5 C5 9 9 9 7 7 7 7 7 7 7 7

Q7 '14a 14 7 7T3 C2 8 5 5 2 2 2 2 2 2 1 1 14T4

Q7 '14b 14 7 7T4 C2 22 3 3 3 1 1 1 1 1 1 1 14T32

Q7 '14c 14 7 C7 C2 3 3 3 1 1 1 1 1 1 1 1 14T8

The polynomials in the table are '8a = x8 + 4x5 + 2x4 + 4x2 + 2, '16 = x16 + 4x5 + 2x4 +
4x2 + 2, '6 = x6 + 676 · 3, '18a = x18 + 3, '9a = x9 + 3, '27b = x27 + 3x6 + 9x+ 3, '8b =
x8 + 4x7 + 4x4 + 12x2 + 2, '8c = x8 + 2x6 + 4x+ 6, '8d = x8 + 10x6 + 12x4 + 2, '12a =
x12 + 6x3 + 6x+ 6, '9b = x9 + 3x3 + 9x2 + 3, '12b = x12 + 6x3 + 9x+ 3, '18b = x18 + 12x+
6, '25 = x25 + 130x20 + 475x16 + 125x12 + 525x11 + 175x10 + 125x7 + 375x6 + 525x5 + 250x2 +
375x+ 120, '14a = x14 + 14x2 + 7, '14b = x14 + 7x+ 7, '14c = x14 � 21x12 � 147x10 + 70x7 �
49x5 � 77.
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In the case of extensions of degree 14 over Q7 the criteria always reduced the number of
groups to one.

Example 6.2. Let '18a = x18 + 3 2 Q3. The ramification polygon R('18a) consists of
three segments of slopes �9, �3, and 0. This yields a tower of extensions

L1 = L2(↵) � L2(�) � L3(�) � Q3

with �2 + 3 = 0, �3 + 26� = 0, and ↵3 + 10� = 0. With the methods from section 3 for
computing Galois groups of polynomials whose ramification polygon consists of one segment
we find that Gal(L3/Q3) ⇠= C2, Gal(L2/L3) ⇠= A3, and Gal(L1/L2) ⇠= A3.
By Theorem 4.5 the Galois group of L2/Q3 is isomorphic to a subgroup of the wreath product

Gal(L2/L3) oGal(L3/Q3) ⇠= A3 o C2.

With the criteria from Propositions 4.6 and 4.7 we determine that Gal(L2/Q3) ⇠= 6T2 (see
Example 6.1).

Again by Theorem 4.5 the Galois group of L1/Q3 is isomorphic to a subgroup of the wreath
product

Gal(L1/L2) oGal(L2/Q3) ⇠= A3 o 6T2.
As shown in Example 6.1 Propositions 4.6 and 4.7 reduce the number of groups to be considered
to groups isomorphic to 18T18, 18T21, and 18T88 with 18T21 < 18T88. Using relative
resolvents we check to which of these groups Gal(L1/Q3) isomorphic. We get Gal(L1/Q3) ⇠=
18T18.
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