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Abstract. Let K be a Galois extension of the 2-adic numbers Q2 of degree 16
and let G be the Galois group of K/Q2. We show that G can be determined
by the Galois groups of the octic subfields of K. We also show that all 14
groups of order 16 occur as the Galois group of some Galois extension K/Q2

except for E16, the elementary abelian group of order 24. For the other 13
groups G, we give a degree 16 polynomial f(x) such that the Galois group of
f over Q2 is G.

1. Introduction

Two important problems in Galois theory are the following.

(P1) Given an irreducible polynomial f(x) of degree n defined over a field F ,
identify the Galois group of f as a transitive subgroup of Sn (the symmetric
group on n letters).

(P2) Given a field F and a transitive subgroup G of Sn, find an irreducible poly-
nomial f of degree n whose Galois group over F is G, if such a polynomial
exists.

If we restrict to the case where F = Qp, the field of p-adic numbers, then no
general methods are known for either problem. However, partial results do exist.
For example, Galois groups of over the p-adic numbers must be solvable (cf. [18]).
Therefore problem (P2) is impossible to answer for nonsolvable groups.

Since the number of degree n extensions of Qp is finite [14], it is possible to deter-
mine defining polynomials for all extensions along with their corresponding Galois
groups. If we tabulate these results, we e↵ectively provide an answer for (P2) in the
cases where a solution exists. Furthermore, the task of resolving (P1) for a given
polynomial f amounts to determining which of the pre-tabulated fields is isomor-
phic to the stem field of f . Note that the p-adic root-finding algorithm in [15, 16]
can determine when two polynomials define isomorphic fields.

Consequently, current research on solving problems (P1) and (P2) focuses on
classifying degree n extensions of Qp by computing a defining polynomial for each
extension as well as the polynomial’s Galois group. When p - n, then all extensions
are tamely ramified and are well understood in principle. The situation is similar
when p = n, with [1] providing all pertinent theory. In both cases, explicit methods
for the computation of defining polynomials and Galois groups can be found in [12].

The situation is more di�cult when p | n and n is composite. In this case, no
general results are known. However, some progress has been made on individual
cases up to n = 15. Table 1 gives data on the number of degree n extensions of Qp,
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Table 1. For a given pair (p,n), the number of nonisomorphic
degree n extensions of Qp is given in column #. Sources which
contain methods for computing Galois groups are listed in the col-
umn References.

(p,n) # References

(2,4) 59 [12]
(2,6) 47 [12]
(3,6) 75 [12]
(2,8) 1823 [13]
(3,9) 795 [11]
(2,10) 158 [12]
(5,10) 258 [12]
(2,12) 5493 [6–8]
(3,12) 785 [2]
(2,14) 590 [5]
(7,14) 654 [9]
(3,15) 1172 [3]
(5,15) 1012 [4]

sorted by pairs (p, n). The column# gives the number of nonisomorphic extensions.
Though there is no general formula which counts such extension, this number can
be calculated by first computing defining polynomials using [16]. Sources which
contain methods for computing Galois groups are listed in the column References

This paper focuses on solving problems (P1) and (P2) for the case of Galois
extensions of degree 16 defined over the 2-adic numbers. As Table 1 shows, our work
fills a gap in the literature. In Section 2, we solve problem (P1). In particular,
we develop a method for computing the Galois group of a Galois 2-adic field of
degree 16. However our method does not follow the traditional approach [19], which
relies on factoring resolvent polynomials. Instead, we only need to compute octic
subfields and the Galois groups of their normal closures. This is a straightforward
computation thanks to the complete list of octic 2-adic fields in [13] and the p-adic
root finding algorithm [15,16]. As a corollary of our work in this section, we prove
that the group E16 does not occur as the Galois group of a degree 16 2-adic field.

In the final section, we solve problem (P2). Again our methods di↵er from the
traditional approach [16], which constructs a large generating set of polynomials
(with redundancies) and discards isomorphic extensions using [15]. Instead, we use
our results from Section 2 to prove that every Galois 2-adic field of degree 16 has an
octic subfield. Consequently, each such field can be realized as a quadratic extension
of an octic 2-adic field. We then give an algorithm for constructing quadratic
extensions of 2-adic fields in general and use our method to produce polynomials
whose Galois groups correspond to the remaining 13 transitive subgroups of S16 of
order 16.

2. Computing Galois Groups

In this section, we describe our approach for computing Galois groups of Galois
extensions of degree 16. We note that our method works over arbitrary base fields.
Though for Corollary 2.3 we do specialize to the case where the base field is the
2-adic numbers.
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Table 2. The 14 groups of order 16. Each is identified by their
transitive number T (as implemented in [10]) as well as a more
descriptive name. The final column lists the Galois groups of
all proper, nontrivial Subfields (as defined in Theorem 2.1), also
identified by T numbers. A more descriptive name for each subfield
can be found in Table 3.

T Description Subfields

1 C16 2T1, 4T1, 8T1
2 E4 ⇥ C4 (2T1)7, (4T1)4, (4T2)7, (8T2)6, 8T3
3 E16 (2T1)15, (4T2)35, (8T3)15

4 C4 ⇥ C4 (2T1)3, (4T1)6, 4T2, (8T2)3

5 C8 ⇥ C2 (2T1)3, (4T1)2, 4T2, (8T1)2, 8T2
6 C8 o5 C2 (2T1)3, (4T1)2, 4T2, 8T2, 8T7
7 Q8 ⇥ C2 (2T1)7, (4T2)7, 8T3, (8T5)2

8 C4 o C4 (2T1)3, (4T1)2, 4T2, (4T3)2, 8T2, 8T4, 8T5
9 D4 ⇥ C2 (2T1)7, (4T2)7, (4T3)4, 8T3, (8T4)2, (8T9)4

10 E4 o C4 (2T1)3, (4T1)2, 4T2, (4T3)4, 8T2, (8T4)2, (8T10)2

11 Q8 o C2 (2T1)7, (4T2)7, 8T3, (8T11)3

12 C8 o3 C2 (2T1)3, 4T2, (4T3)2, 8T4, 8T8
13 D8 (2T1)3, 4T2, (4T3)2, 8T4, (8T6)2

14 Q16 (2T1)3, 4T2, (4T3)2, 8T4

Groups of order 16. Up to isomorphism, there are 14 groups of order 16. Since
this paper deals with computing Galois groups of degree 16 polynomials, it is ben-
eficial to identify these groups as transitive subgroups of S16. Such information
is well known and is readily accessed in the computer software program GAP [10].
For example, Table 2 lists defining characteristics for the 14 groups. Each group is
identified in two ways: (1) by its T-number, and (2) by a more descriptive name
that indicates its structure. The T-numbering system is implemented in GAP.

For the descriptive name, Cn denotes the cyclic group of order n, En the el-
ementary abelian group of order n, Dn the dihedral group of order 2n, Qn the
generalized quaternion group of order n, ⇥ a direct product, and o a semidirect
product. In the case of C8oC2, there are di↵erent mappings from C2 into Aut(C8).
These give rise to two distinct groups of order 16 (other than D8). One is defined
by the mapping x 7! x3, and the other is given by x 7! x5. We distinguish these
two cases in the obvious way: by C8 o3 C2 and C8 o5 C2, respectively.

Galois Groups of Subfields. Let K/F be a Galois extension of fields, and let
G be the Galois group of K/F . Then under the Galois correspondence, the non-
isomorphic subfields of K/F correspond to conjugacy classes of subgroups of G.
For each such subfield, we can compute the Galois group of its normal closure.
Theorem 2.1 shows that the list of all such Galois groups is an invariant of G.

Theorem 2.1. Let K/F be a Galois extension of fields, and let G be the Galois

group of K/F . The list of the Galois groups of the normal closures of all proper,

nontrivial subfields of K/F is an invariant of G. That is, any two extensions that

have the same Galois group must have the same list of Galois groups of subfields.

Proof. Let E/F be a subfield of K/F , and let H  G be the subgroup that corre-
sponds to E under the Galois correspondence. Let Eg be the normal closure of E
and let N  G be the subgroup that corresponds to Eg. Then Eg is the smallest
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Table 3. The sizes and descriptive names of the groups occurring
in the Subfields column of Table 2.

G Size Description

2T1 2 C2

4T1 4 C4

4T2 4 E4

4T3 8 D4

8T1 8 C8

8T2 8 C4 ⇥ C2

8T3 8 E8

8T4 8 D4

8T5 8 Q8

8T6 16 D8

8T7 16 C8 o5 C2

8T8 16 C8 o3 C2

8T9 16 D4 ⇥ C2

8T10 16 E4 o C4

8T11 16 Q8 o C2

subfield of K containing E that is normal over F . Consequently, N is the largest
normal subgroup of G that is contained inside H; i.e., N is the intersection of all
conjugates of H. Thus the Galois group of Eg/F is isomorphic to G/N .

We can identify G/N as a transitive subgroup of Sd where d = [G : H] in the
following way. Let � be the permutation representation of G acting on the cosets
G/H. Then it is straightforward to check that ker(�) = N . And therefore G/N is
isomorphic to �(G). Note, computing images of permutation representations is a
built-in command in [10]. ⇤

The column Subfields in Table 2 gives the list of Galois groups of subfields for
each of the 14 groups of order 16. Note, repetitions are included and are indicated
via exponents. For example, the entry (2T1)15, (4T2)35, (8T3)15 for the group
16T3 means that a degree 16 extension whose Galois group is E16 has 15 quadratic
subfields, 35 quartic subfields whose normal closures all have Galois group 4T2, and
15 octic subfields whose normal closures all have Galois group 8T3.

All of the entries in Table 2 was computed with GAP. Notice that the Galois groups
of the subfields are also identified by their T-number. For convenience, Table 3 gives
more descriptive information on these groups. The column Description follows
the same conventions as in Table 2.

Galois Group Algorithm. Using Theorem 2.1 and Table 2, we can develop an
algorithm for computing the Galois group of a Galois 2-adic field of degree 16. The
primary computation in our algorithm is compiling the list of the Galois groups of
all proper nontrivial subfields of the field defined by f . This is a straightforward
computation, thanks to the complete list of octic 2-adic fields in [13] and the p-adic
root finding algorithm in [15,16].

Algorithm 2.2. Let f(x) be an irreducible polynomial of degree 16 that defines a

Galois extension over the 2-adic numbers, and let G be the Galois group of f . Let

S be the list of the Galois groups of all nonisomorphic octic subfields of f ’s stem

field, including repetitions. Then,

• If #S = 1,
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– G is 16T1 if 8T1 2 S.
– G is 16T14 otherwise.

• If #S = 2,
– G is 16T6 if 8T2 2 S.
– G is 16T12 otherwise.

• If #S = 3,
– G is 16T4 if S = {8T2, 8T2, 8T2}.
– G is 16T5 if {8T1, 8T1} ✓ S.
– G is 16T7 if {8T5, 8T5} ✓ S.
– G is 16T13 if {8T6, 8T6} ✓ S.
– G is 16T8 otherwise

• G is 16T11 if #S = 4.
• G is 16T10 if #S = 5.
• If #S = 7,

– G if {8T4, 8T4} ✓ S.
– G is 16T2 otherwise.

Proof. By Theorem 2.1, the set S is an invariant of G. The algorithm’s validity is
therefore proved by consulting Table 4, which extracts the information from Table 2
concerning Galois groups of octic subfields and sorts it in decreasing order by the
number of such subfields. The fact that the group 16T3 = E16 does not appear in
our algorithm is explained by Corollary 2.3. ⇤

Corollary 2.3. The group 16T3 = E16 does not occur as the Galois group of a

Galois 2-adic field of degree 16.

Proof. According to Table 4, if K defines a Galois 2-adic field of degree 16 whose
Galois group is E16, then K must have 15 nonisomorphic octic subfields, each of
whose normal closures has Galois group 8T3 = E8. However, according to the
complete list of octic 2-adic fields in [13], there is only one octic 2-adic field among
the 1823 whose normal closure is 8T3. In fact, this field is defined by the polynomial
x8 + 4x6 + 8x2 + 4. Therefore, since there are not enough E8 fields, E16 cannot
occur as the Galois group of a Galois 2-adic field of degree 16. ⇤

3. Defining Polynomials for Octic 2-adic Fields

In the previous section, we developed an algorithm for computing the Galois
group of a Galois 2-adic field of degree 16 using only the list of Galois groups of
the extension’s octic subfields. We also proved that one of the groups of order 16
does not occur as the Galois group of such an extension; namely, 16T3 = E16. In
this section, we show the other 13 groups of order 16 do indeed occur as the Galois
group of a degree 16 2-adic field, and we produce a sample defining polynomial that
realizes each group.

Our method for producing defining polynomials proceeds as follows. By Table 4,
we note that every Galois 2-adic field of degree 16 has at least one octic subfield.
Therefore, every such extension can be realized as a quadratic extension of an octic
2-adic field. But we do not have to consider quadratic extensions of all 1823 octic
2-adic fields. In fact, according to Table 4, we see that every Galois 2-adic field of
degree 16 has an octic subfield whose normal closure has Galois group either 8T1,
8T2, 8T3, or 8T4. There are a total of 61 such fields: 24 of 8T1, 16 each of 8T2
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Table 4. The transitive subgroups of S16 of order 16, sorted by
the number of octic subfields. The data for columnGalois groups
is extracted from Table 2.

T #Octic Subs Galois Groups

3 15 (8T3)15

2 7 (8T2)6, 8T3
9 7 8T3, (8T4)2, (8T9)4

10 5 8T2, (8T4)2, (8T10)2

11 4 8T3, (8T11)3

4 3 (8T2)3

5 3 (8T1)2, 8T2
7 3 8T3, (8T5)2

8 3 8T2, 8T4, 8T5
13 3 8T4, (8T6)2

6 2 8T2, 8T7
12 2 8T4, 8T8
1 1 8T1
14 1 8T4

and 8T4, and the unique 8T3 (which was mentioned in the proof of Corollary 2.3).
For convenience, Table 5 contains polynomials defining these 61 fields, including
their Galois groups.

Our strategy is as follows. For each of the 61 octic fields mentioned above, we
compute all of its quadratic extensions following Theorem 4.3. The resulting fields
are degree 16 extensions of Q2, but not all are necessarily Galois extensions. We
use the p-adic root finding algorithm to discard non-Galois extensions. Then we
use Algorithm 2.2 to compute the Galois groups of the remaining fields. Table 6
gives a sample defining polynomial for each of the 13 transitive subgroups of S16 of
order 16.

4. Quadratic Extensions of Octic 2-adic Fields

Let K be a finite extension of Q2 of degree n, ⇡ a uniformizer of K, | | the non-
Archimedean absolute value onK that extends the 2-adic absolute value, O the ring
of integers in K, P the unique maximal ideal of O, e the ramification index and f
the residual degree of K. We wish to study quadratic extensions of K, which are in
one-to-one correspondence with non-trivial representatives of K⇤/K⇤2. Therefore
we are led to consider the structure of the group K⇤/K⇤2. The group is isomorphic
to an elementary abelian 2-group E2m for some integer m. This follows since there
are only finitely many quadratic extensions of K and since every element in the
group squares to give the identity. The aim of this section is to show m = 2 + n.
We also give a complete set of representatives for this group.

Proposition 4.1. Let U0 denote the units of O. Then

K⇤ = ⇡Z ⇥ U0 ' Z⇥ U0.

Proof. The proof follows immediately since every x 2 K⇤ can be written in a unique
way as x = u⇡k for some integer k where u 2 U0. ⇤

We now study the structure of U0 in more detail. Let x 2 U0 and let ! denote the
Teichmüller character. That is, ! is characterized by the following two properties:
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Table 5. Defining polynomials for the 61 octic 2-adic fields whose
normal closures have GaloisG from among: 8T1, 8T2, 8T3, or 8T4.
These polynomials are taken from [13].

G Polynomial

8T1 x

8 + x

4 + x

3 + x+ 1
8T1 x

8 + 2x7 + 2x6

+ 8x3 + 48
8T1 x

8 + 6x6 + 8x5 + 80
8T1 x

8 + 2x6 + 8x4 + 80
8T1 x

8 + 4x6 + 24x5 + 8x2

+ 48x+ 12
8T1 x

8 + 2x4 + 16x3 + 16x+ 52
8T1 x

8 + 12x6 + 6x4 + 8x2 + 52
8T1 x

8 + 8x7 + 2x4 + 16x3

+ 16x+ 20
8T1 x

8 + 8x6 + 4x4 + 16x2 + 50
8T1 x

8 + 24x6 + 4x4 + 16x2 + 34
8T1 x

8 + 8x6 + 4x4 + 16x2 + 18
8T1 x

8 + 24x4 + 8x2 + 16x+ 46
8T1 x

8 + 8x6 + 4x4 + 16x2 + 34
8T1 x

8 + 16x7 + 28x4 + 16x3 + 2
8T1 x

8 + 28x4 + 16x3 + 50
8T1 x

8 + 24x6 + 4x4 + 16x2 + 2
8T1 x

8 + 24x6 + 12x4 + 10
8T1 x

8 + 8x6 + 12x4 + 26
8T1 x

8 + 8x6 + 32x3 + 24
8T1 x

8 + 8x6 + 12x4 + 42
8T1 x

8 + 24x6 + 12x4 + 26
8T1 x

8 + 24x6 + 12x4 + 42
8T1 x

8 + 8x6 + 12x4 + 58
8T1 x

8 + 24x6 + 12x4 + 58
8T2 x

8 + 28x4 + 144
8T2 x

8 + 6x6 + 8x5 + 16
8T2 x

8 + 2x6 + 8x4 + 16
8T2 x

8 + 6x6 + 2x4 + 4x2

+ 8x+ 12
8T2 x

8 + 2x6 + 6x4 + 4x2

+ 8x+ 20
8T2 x

8 + 2x6 + 6x4 + 4x2

+ 8x+ 28
8T2 x

8 + 10x4 + 16x+ 4

G Polynomial

8T2 x

8 + 10x4 + 16x+ 36
8T2 x

8 + 4x6 + 6x4 + 16x3

+ 24x2 + 36
8T2 x

8 + 2x4 + 16x+ 4
8T2 x

8 + 14x4 + 4x2 + 8x+ 22
8T2 x

8 + 14x4 + 4x2 + 8x+ 6
8T2 x

8 � 15
8T2 x

8 + 8x7 + 12x6 + 10x4

+ 8x3 + 4x2 + 8x+ 14
8T2 x

8 + 8x7 + 14x4 + 4x2

+ 8x+ 30
8T2 x

8 + 16
8T2 x

8 + 8x7 + 8x5 + 2x4

+ 12x2 + 8x+ 26
8T2 x

8 + 28x4 + 36
8T3 x

8 + 4x6 + 8x2 + 4
8T4 x

8 + 12x4 + 16
8T4 x

8 + 12x4 + 144
8T4 x

8 + 6x6 + 6x4 + 8x3

+ 4x2 + 8x+ 20
8T4 x

8 + 4x6 + 40x2 + 4
8T4 x

8 + 8x5 + 6x4 + 16x3

+ 8x2 + 12
8T4 x

8 + 12x6 + 10x4 + 8x2 + 36
8T4 x

8 + 4x7 + 2x4 + 4x2 + 14
8T4 x

8 + 4x7 + 10x4 + 4x2 + 14
8T4 x

8 + 4x7 + 10x4 + 4x2 + 6
8T4 x

8 + 4x7 + 14x4 + 12x2 + 10
8T4 x

8 + 4x7 + 6x4 + 12x2 + 2
8T4 x

8 + 152x4 + 16
8T4 x

8 + 4x7 + 2x4 + 4x2 + 6
8T4 x

8 + 4x7 + 14x4 + 12x2 + 2
8T4 x

8 + 2x4 + 8x3 + 12x2

+ 8x+ 18
8T4 x

8 + 44x4 + 100
8T4 x

8 + 12x6 + 6x4 + 4x2 + 8x+ 2
8T4 x

8 + 52x4 + 36

!(x) ⌘ x (mod P) and !(x)2
f�1 = 1. Then ! induces a canonical group isomor-

phism between (O/P)⇤ and µK , the (2f � 1)-st roots of unity in U0. If we let U1

denote the set of units in U0 that are congruent to 1 mod P, then it follows that
U0 ' µK ⇥ U1, with ! inducing the isomorphism.

Proposition 4.2. As abelian groups we have the isomorphism: K⇤ ' µ0
K⇥Z⇥Zn

2 ,

where µ0
K is a cyclic group such that |µ0

K | = (2f � 1)2k for some 1  k  n.

Proof. For i � 1, let Ui be the set of units such that x ⌘ 1 (mod Pi). The map
x 7! (x � 1)/⇡i induces an isomorphism from Ui/Ui+1 to the additive group O/P
(i.e., C2f ). Therefore Ui has a natural O-module structure, being finitely generated
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of rank n. More precisely, U1 ' µK,1 ⇥ Zn
2 where µK,1 is the finite cyclic group of

roots of unity in K congruent to 1 mod P and |µK,1| = 2k for some 0  k  n.
By Proposition 4.1, we have K⇤ ' µK ⇥µK,1⇥Z⇥Zn

2 . Now, |µK | = 2f � 1 and
|µK,1| divides 2n. Since ⇡ | 2, it follows that �1 ⌘ 1 (mod P). Thus �1 2 µK,1.
Therefore, 2 | |µK,1| | |µ0

K |. This proves k � 1, as required. ⇤
Theorem 4.3. As groups, K⇤/K⇤2 ' E22+n

, so that |K⇤/K⇤2| = 22+n
. Moreover,

a system of representatives is given by the set

Q =

8
<

:⇡� (1 + !⇡2e)�
eY

i=1

f�1Y

j=0

⇥
1 + tj⇡2i�1

⇤"i
9
=

;

where t is a root of the polynomial h(x) 2 Q2[x] that defines the maximal unramified

subextension of K and where u = 2/⇡e
. In this case �, �, "i 2 {0, 1}, and ! 2 O/P

is not a root of x2 + ux (mod P).

Proof. By Proposition 4.2, we have K⇤ ' µ0
K ⇥Z⇥Zn

2 , where µ
0
K is a cyclic group

of even order. It follows that K⇤/K⇤2 ' C2
2 ⇥ (Z2/2Z2)n ' E22+n .

To construct the set Q, we first recall that the isomorphism K⇤ ' µ0
K ⇥Z⇥Zn

2 ,
comes from the fact that K⇤ = U0 ⇥⇡Z. Thus we conclude that one representative
of K⇤/K⇤2 is ⇡. Next, we recall that U0 ' (O/P)⇤ ⇥ U1. Since the multiplicative
group (O/P)⇤ has odd order 2f � 1, this implies that U0/U

2
0 ' U1/U

2
1 .

Thus, we are left to determining the structure of U1/U
2
1 . By Hensel’s lemma,

every element x 2 U1, such that x ⌘ 1 (mod P2e), is a square. The remaining
structure of Q can be determined by systematically considering elements (1+a⇡i)2

for a 2 O/P, 1  i  e, knowing a priori how many elements Q should have. ⇤
4.1. Polynomials. Using Theorem 4.3, we can construct all quadratic extensions
of the 61 fields defined by the polynomials in Table 5. There are a total of 61·1023 =
62403 such extensions. Using the p-adic root-finding algorithm in [15,16], we discard
all non-Galois extensions. Using Algorithm 2.2, we compute the Galois group of
each extension. For each of the 13 possible Galois groups G of Galois 2-adic fields
of degree 16, Table 6 lists a polynomial whose Galois group over Q2 is G. Our
polynomials were also checked using the methods in [17].
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Table 6. For each transitive subgroup G of S16 with |G| = 16,
a polynomial with Galois group G over Q2 is given in column
Polynomial. The group 16T3 = E16 is missing from the table,
since it does not occur as a Galois group over Q2 (see Corol-
lary 2.3).

Polynomial G

x

16 + 8x12 + 32x11 + 16x10 + 32x9 + 4x8 + 32x7 + 32x5 + 2 16T1
x

16 + 4x12 + 8x10 + 16x9 � 8x8 + 16x6 + 32x5 � 8x4 + 64x3 + 16x2 � 96x+ 228 16T2
x

16 � 8x15 + 60x14 + 80x13 � 44x12 � 40x11 + 128x10 + 48x9 � 20x8 + 224x7 16T4
+ 296x6 + 64x4 + 176x3 + 32x2 � 64x+ 124

x

16 + 8x14 + 2x8 + 16x7 + 4x4 + 8x2 + 16x+ 10 16T5
x

16 + 2x8 + 4x4 + 8x2 + 16x+ 2 16T6
x
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