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Abstract. Let f(x) = x

6 + ax

4 + bx

2 + c be an irreducible sextic polynomial

with coe�cients from a field F (of characteristic 6= 2), and let g(x) = x

3+ax

2+
bx+c. We describe an e�cient algorithm to compute the Galois group of f over
F that involves the discriminants of f and g and the reducibility of a related

sextic polynomial. As an application, we develop one-parameter families for
each possible Galois group. Using these families, we compare the timings of

our algorithm against those currently available in Magma and Pari/GP.

1. Introduction

Let F be a field and f(x) 2 F [x] an irreducible polynomial. Let K/F denote
the splitting field of f in a fixed algebraic closure F of F . An important task
in computational algebra is the determination of the Galois group of f ; that is,
the collection of all automorphisms of K that fix F . While several methods for
accomplishing this task appear in the literature, most current implementations
utilize one of two strategies: (1) absolute resolvent polynomials [12], and (2) relative
resolvent polynomials [13].

Both approaches have received much attention in the last 20 years. For example,
the absolute resolvent method is implemented in Pari/GP [10] for computing Galois
groups of polynomials defined over the rational numbers up to degree 11; details
(up to degree 7) can be found in [5]. The relative resolvent method is implemented
in Magma [3]. Magma’s algorithm is, in principle, not limited by the degree of
the polynomial, and the base field can be more general than the rational numbers.
Magma’s implementation utilizes an extra feature that improves running times
for imprimitive extensions; namely, it computes subfields of the stem field of f first
(see [15]). By stem field, we mean the field extension obtained by adjoining one root
of the polynomial to the base field. This task involves factoring the polynomial over
its stem field. Leveraging this subfield information and initial absolute resolvent
information, Magma’s algorithm proceeds with the relative resolvent method using
degree-independent algorithms as described in [8] and [7].

A clear benefit of Magma’s algorithm for determining Galois groups is the sub-
field information it exploits. However, Magma’s approach to computing subfields
assumes a generic input polynomial, without taking into account inherent subfield
information that may be obtained without factoring the polynomial over its stem
field. For example, even polynomials come attached with a polynomial defining an
index 2 subfield (obtained by halving all exponents). Making use of this included
subfield information can be beneficial. For example, as noted in [9], computing the
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Table 1. One-parameter families of even quartic polynomials.

Group Polynomials
E4 x4 + (2t+ 1)2

C4 x4 + 4tx2 + 2t2 t 6= 0
D4 x4 + t2 + 1 t 6= 0

Galois group of an even quartic polynomial x4+ax2+b requires nothing more than
testing whether two numbers are perfect squares; one of those numbers involves
the discriminant of the “included” quadratic polynomial x2 + ax+ b. The purpose
of this paper is to present an algorithm for computing Galois groups of even sex-
tic polynomials that is similar in spirit to algorithm in [9] and that is faster than
algorithms implemented in Magma and Pari/GP.

The remainder of the paper is organized as follows. To provide additional con-
text, Section 2 describes an algorithm for computing Galois groups of even quartic
polynomials that is based on [9]. This section also provides one-parameter fam-
ilies for each possible Galois group and uses these families to compare run times
(over the rational numbers) for this algorithm against those implemented in Magma
and Pari/GP. These two software programs were chosen since they are commonly
used in number-theoretic computations and they represent the two most common
approaches for Galois group computations (absolute vs. relative resolvents). Sec-
tions 3, 4, and 5 accomplish analogous goals for even sextic polynomials.

2. Even Quartic Polynomials

As described in [9], the possibilities for the Galois group of an irreducible even
quartic polynomial are E4 (elementary abelian of order 4), C4 (cyclic of order 4),
and D4 (dihedral of order 4). The authors’ algorithm for computing the Galois
group of such a polynomial is as follows.

Algorithm 2.1 (Even Quartic Polynomials). Let f(x) = x4 + ax2 + b 2 F [x] be
an irreducible polynomial. This algorithm returns the Galois group of f over F .

(1) If b is a perfect square in F , return E4 and terminate.
(2) Else, if b(a2 � 4b) is a perfect square in F , return C4 and terminate. Oth-

erwise return D4 and terminate.

Briefly, here is why this algorithm works. Since the discriminant of f is b(4a2 �
16b)2, it follows that the discriminant of f is a perfect square if and only if b is a
perfect square if and only if the Galois group of f is contained in A4 (the alternating
group of degree 4). Among E4, C4, and D4, only E4 is a subgroup of A4. Now, the
polynomial g(x) = x2 + ax + b defines a quadratic subfield of the stem field of f ;
note, the discriminant of g is a2�4b. When b is not a perfect square, the polynomial
x2�b defines a quadratic subfield of the splitting field of f . When the Galois group
is cyclic, these two subfields coincide; reflected in the fact that b(a2�4b) must be a
perfect square. When the Galois group is dihedral, these two quadratic extensions
are not the same; so b(a2 � 4b) is not a perfect square. Both statements can be
verified using group-theoretic arguments combined with the Galois correspondence.

Using Algorithm 2.1, it is not di�cult to produce families of polynomials that
have the indicated Galois group. See Table 1 for examples.
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Table 2. A comparison of run times of Algorithm 2.1 with the
standard Galois group algorithms implemented in Magma and
Pari/GP. Each row corresponds to a polynomial f(x) = x4+ax2+b
whose Galois group is specified in column Polynomial. Columns
a and b give the number of digits of a and b, respectively. Run
times are given in milliseconds.

Polynomial a b Alg 2.1 Magma Pari/GP
E4 4977 9955 1 760 2027
C4 5857 10220 1 310 2060
D4 5824 11646 1 380 2238

We implemented this algorithm in Pari/GP and compared its timings to the
standard Galois group algorithms available in Magma (v2.22) and Pari/GP (v2.5.3).
The test polynomials we employed are available from [1]. These polynomials, as
well as test polynomials referenced in Section 4, were computed as follows. We start
with a polynomial in Table 1 (respectively Table 5) and set t = 101. We then call
Pari/GP’s poltschirnhaus command 11 times (respectively 8 times) to produce
a polynomial defining the same stem field but whose coe�cients are roughly 5000–
11000 (respectively 500–4500) digits long. We then use Algorithm 3.4 to transform
the polynomial into an even polynomial that defines the same stem field. For each
of these polynomials x4 + ax2 + b, Table 2 contains the number of digits of a and
b as well as the timings for Algorithm 2.1, Magma, and Pari/GP. All timings are
in milliseconds. Computations were done on a machine with a 3 GHz Intel Core i7
processor and 8 GB of RAM.

As Table 2 shows, Algorithm 2.1 is significantly faster than the standard Galois
group algorithms implemented in Magma and Pari/GP. This observation reinforces
our claim that it is beneficial to exploit inherent subfield information given by even
polynomials when designing Galois group algorithms. In the remaining sections,
we show how this is possible to do with even sextic polynomials.

3. Algorithm for Even Sextic Polynomials

Let f(x) = x6 + ax4 + bx2 + c 2 F [x] be an irreducible polynomial. Let K/F
denote the stem field of f and G the Galois group of f . After ordering the roots of
f , we can identify G as a transitive subgroup of S6, well defined up to conjugation
(di↵erent orderings correspond to conjugate groups). Let g(x) = x3 + ax2 + bx+ c.
Then g defines a cubic subfield of K/F . The automorphism group of K/F is
isomorphic to the centralizer of G in S6, as shown in [2] for example. Since K/F
has an index two subfield, it follows from the Galois correspondence that the order
of the centralizer of G in S6 must be even. Of the 16 transitive subgroups of S6,
only 8 have centralizer orders that are even. Table 3 gives these 8 groups, their
transitive numbers (as given in Magma, based on [4]), their centralizer orders, their
orders, and a descriptive name for each group.

Since K/F has a cubic subfield defined by g(x), we can determine properties of
G from properties of g(x) using the Galois correspondence.

Proposition 3.1. Let f(x) = x6 + ax4 + bx2 + c 2 F [x] be irreducible, K the stem
field of f , G the Galois group of f , and g(x) = x3 + ax2 + bx+ c. Let d denote the
discriminant of g so that d = a2b2 � 4b3 � 4a3c+ 18abc� 27c2. Then
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Table 3. Possible Galois groups of irreducible even sextic poly-
nomials. Size gives the order of the group and CentOrd gives the
order of the centralizer of the group in S6.

T Name Size CentOrd
1 C6 6 6
2 S3 6 6
3 D6 12 2
4 A4 12 2
6 A4 ⇥ C2 24 2
7 S+

4 24 2
8 S�

4 24 2
11 S4 ⇥ C2 48 2

(1) �c is a perfect square in F if and only if G is either A4 or S+
4 .

(2) d is a perfect square in F if and only if G is either C6, A4, or A4 ⇥ C2.
(3) �cd is a perfect square in F if and only if G is either S3, A4, or S�

4 .

Proof. The discriminant of f(x) = x6 + ax4 + bx2 + c is �c(8d)2. Therefore G is a
subgroup of A6 if and only if �c is a square in F . Of the 8 possibilities for G, only
A4 and S+

4 are subgroups of A6. This proves item (1).
Since d is the discriminant of the cubic polynomial g(x) = x3+ax2+ bx+ c, d is

a perfect square if and only if the Galois group of g(x) is C3. But since g(x) defines
a cubic subfield of K/F , the stem field of g(x) corresponds to an index 3 subgroup
H of G containing the point stabilizer of 1 in G. By the Galois correspondence, the
Galois group of g(x) is isomorphic to the image of the permutation representation
of G acting on the cosets G/H. Among the 8 possibilities for G, only C6, A4, and
A4⇥C2 possess such a subgroup H with a cyclic permutation representation image.
This proves item (2).

If both �c and d are perfect squares, then clearly �cd is a perfect square. Based
on the previous two paragraphs, there is only one group among the 8 where this
occurs; namely, A4. Otherwise, if �cd is a perfect square, it must be the case
that both �c and d are not perfect squares. For the remainder of the proof, we
suppose neither �c nor d are perfect squares. In this case, the polynomials x2 + c
and x2 � d define quadratic subfields of the splitting field of f(x). By the Galois
correspondence, the stem field of x2 + c corresponds to Hc = A6 \G. Similarly, if
K 0 is the normal closure of g(x), then the subgroup fixing K 0 is the normal core,
CoreG(H), of H in G (recall H is the subgroup fixing the stem field of g(x)). Thus
the stem field of x2 � d corresponds to the unique subgroup Hd of G of index 2 (up
to conjugation) that contains CoreG(H). It follows that �cd is a perfect square
if and only if Hc = Hd. Among the four remaining possible Galois groups, direct
computation shows S3 and S�

4 have Hc = Hd. The groups D6 and S4 ⇥ C2 have
Hc 6= Hd. ⇤

Based on Proposition 3.1, we can now determine when the Galois group of f(x) =
x6 + ax4 + bx2 + c is either A4 or S+

4 . If �c is a perfect square, then the Galois
group of f(x) is A4 if d is a perfect square and S+

4 if d is not a perfect square.
To determine the Galois group in the remaining six cases, we introduce a degree

six resolvent polynomial.
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Proposition 3.2. Let f(x) = x6 + ax4 + bx2 + c 2 F [x] be irreducible, K the stem
field of f , and G the Galois group of f . Define h(x) to be the following degree 6
polynomial:

x6 +4ax5 +(6a2 � 2b)x4 +(4a3 � 2ab� 26c)x3 +(a4 +2a2b� 7b2 �
24ac)x2+2(a2� 3b)(ab� 9c)x+(a2b2� 4b3� 4a3c+18abc� 27c2).

Suppose h(x) is squarefree. Then h(x) is reducible if and only if G is either C6, S3,
or D6.

Proof. Let H be the subgroup of S6 generated by (1, 2), (3, 4), and (3, 4, 5, 6). Thus
H is a group of order 48 isomorphic to S2 ⇥ S4. Define a function R(x) by

R(x2) =
Resultanty(f(y), f(x� y))

26 · f(x/2) .

Using a computer algebra system, we can show R(x) is the product of x3 and an
even degree 12 polynomial. In fact, this degree 12 polynomial is h(x2). In the
language of [5], R(x) is the (absolute) resolvent polynomial corresponding to the
multivariable function T = x1 + x2 that is stabilized by H. As shown in [11], the
irreducible factors of R(x) that occur with multiplicity one correspond to orbits of
the action of G on the cosets G/H. By direct computation on the 8 possible groups,
all have an orbit of length 12 except C6, S3, and D6. It follows that if h(x2) is
squarefree, it is reducible if and only if G is one of these three groups. Hence h(x)
is reducible if and only if G is either C6, S3, or D6. ⇤

We point out that Proposition 3.2 includes the assumption that h(x) is square-
free. This is always possible to do by performing a suitable tschirnhaus transfor-
mation on f (see [5, Algorithm 3.6.4]) and then using Algorithm 3.4 to produce
an even polynomial defining the same field as the transformed polynomial. The
algorithm makes use of a stem field automorphism of order two. As described in
the first paragraph of this section, such an automorphism always exists in the case
of irreducible even polynomials.

Here is how to construct even polynomials. Suppose f 0(x) is an irreducible sextic
polynomial obtained by performing a tschirnhaus transformation on the even sextic
polynomial f(x). Thus f 0 and f define the same stem field. If we factor f 0 over
its stem field, the automorphisms of the stem field can be represented as the roots
of the linear factors; i.e., they will be polynomials of degree strictly less than the
degree of f 0. One of the automorphisms will be the identity function, ◆(x) = x. Let
�(x) 6= ◆(x) be an automorphism of order 2; that is, �(�(x)) ⌘ x (mod f 0(x)). The
characteristic polynomial of x� �(x) is the desired even polynomial, as we show in
Proposition 3.3. Note, characteristic polynomials can be computed with resultants
(see Algorithm 3.4).

Proposition 3.3. Let f(x) be an irreducible polynomial in F [x] and K/F its stem
field. Suppose there exists an automorphism �(x) of K/F of order 2. Let �(x) be

represented as a root of a linear factor obtained by factoring f over K and let f̃(x)
be the characteristic polynomial of x� �(x). Then f̃ is an even polynomial. If f̃ is
irreducible, it is a defining polynomial for K.

Proof. Since �(x) is a root of f contained in K/F , it follows that f(�(x)) ⌘ 0
(mod f(x)). Thus as a mapping from F ! F that fixes F , � permutes all roots of
f (no root is left fixed since f is irreducible). Since � has order 2, as a permutation
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it is a product of two cycles; i.e., if a, b 2 F are roots of f such that �(a) = b, then
�(b) = a. Thus the function ⌧(x) = x � �(x) naturally partitions the images of
the roots of f into sets of size two. That is, for roots a and b of f , if �(a) = b,
then ⌧(a) = �⌧(b). Let f̃(x) be the characteristic polynomial of ⌧ so that f̃(x) =Q

i(x � ⌧(ri)) where ri are the roots of f . It follows that f̃(x) is of the form

(x2�a1) · · · (x2�ak) for some ai 2 F . Thus f̃(x) is even and is equal to a power of
the minimal polynomial of ⌧ . Since the minimal polynomial of ⌧ defines a subfield
of K, if f̃ is irreducible it is a defining polynomial for K. ⇤

Proposition 3.3 shows an extension K/F can be defined by an even polynomial
if its automorphism group has even order. If the stem field of f(x) has an automor-
phism group of even order, Algorithm 3.4 produces an even polynomial defining
the same stem field.

Algorithm 3.4. Let f(x) 2 F [x] be an irreducible polynomial and let K/F be the
stem field of f . Assume the automorphism group of K/F has even order. This

algorithm produces an irreducible even polynomial f̃(x) 2 F [x] of the same degree
as f that also defines K.

(1) Factor f over K and let A be the collection of roots of linear factors of this
factorization. Thus A is the collection of automorphisms of K/F .

(2) Set B equal to the empty set. For each nonidentity automorphism �(x) 2 A,
add �(x) to B if �(�(x)) ⌘ x (mod f(x)). Thus B is the collection of
automorphisms of order 2.

(3) For each �(x) 2 B:

(a) Set f̃(x) = Resultanty(x� (y � �(y)), f(y)). Thus f̃(x) is the charac-
teristic polynomial of x� �(x).

(b) If f̃ is irreducible, return f̃(x) and terminate.

(4) If none of the functions f̃ are irreducible, let f 0(x) be a tschirnhaus trans-
formation of f(x) and K 0/F the stem field of f 0. Factor f 0 over K 0 and
redefine A to be the collection of roots of linear factors of this factorization.
Repeat steps (2)–(4).

Note, Algorithm 3.4 requires an irreducible characteristic polynomial to ter-
minate. In the case of reducible characteristic polynomials, Step (4) employs a
tschirnhaus transformation. Only finitely many tschirnhaus transformations result
in reducible characteristic polynomials (see for example [6] or [14]). In practice, we
have found that zero or one such transformations are typically needed.

In Table 4, we summarize the information presented in Propositions 3.1 and 3.2.
This table forms the basis for our algorithm for computing the Galois group of an
irreducible even sextic polynomial.

Algorithm 3.5. Let f(x) = x6 + ax4 + bx2 + c 2 F [x] be irreducible, d as in
Proposition 3.1, and h(x) as in Proposition 3.2. Assume h(x) is squarefree (using
Algorithm 3.4 if necessary). This algorithm returns the Galois group of f(x).

(1) If �c is a perfect square in F , then
(a) If d is a perfect square, return A4 and terminate.
(b) Otherwise return S+

4 and terminate.
(2) Else if d is a perfect square, then

(a) If h(x) is reducible, return C6 and terminate.
(b) Otherwise return A4 ⇥ C2 and terminate.
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Table 4. For an irreducible even sextic polynomial f(x) = x6 +
ax4+bx2+c, let d be the discriminant of g(x) = x3+ax2+bx+c and
let h(x) be defined as in Proposition 3.2. The table lists whether
the values of �c, d, and �cd are perfect squares and whether h(x)
is reducible, according to the Galois group G of f .

T G �c = square d = square �cd = square h(x) = reducible
1 C6 no yes no yes
2 S3 no no yes yes
3 D6 no no no yes
4 A4 yes yes yes no
6 A4 ⇥ C2 no yes no no
7 S+

4 yes no no no
8 S�

4 no no yes no
11 S4 ⇥ C2 no no no no

(3) Else if �cd is a perfect square, then
(a) If h(x) is reducible, return S3 and terminate.
(b) Otherwise return S�

4 and terminate.
(4) Else if h(x) is reducible, return D6 and terminate. Otherwise return S4⇥C2

and terminate

Two Examples. To illustrate Algorithm 3.5, we will use it to compute the Galois
groups of the polynomials f1(x) = x6 + 2 and f2 = x6 + 3.

(1) For f1(x), we have �c = �2 which is not a square. Let g(x) = x3 + 2.
The discriminant d of g is �108 = �22.33, which is also not a perfect
square. It follows that �cd = 63 is not a perfect square either. As defined
in Proposition 3.2, h(x) = x6 � 52x3 � 108 = (x3 � 54)(x3 + 2). Since h(x)
is reducible, the Galois group of f1 is D6.

(2) For f2(x) = x6 + 3, we have �c = �3, which is not a square. Let g(x) =
x3 + 3. The discriminant d of g2 is �243 = �35, which is also not a
square. However, �cd = 36 which is a perfect square. The polynomial
h(x) = x6 � 78x3 � 243 = (x3 � 81)(x3 + 3). Since h(x) is reducible, the
Galois group of f2 is S3.

4. One-Parameter Families

In this section, we determine one-parameter families of even sextic polynomials
defined over the rational numbers for each of the 8 possible Galois groups.

Proposition 4.1. The polynomials in Table 5 have the indicated Galois group over
the rationals, except for values of t that result in reducible polynomials.

Proof. Let f(x) = x6 + ax4 + bx2 + c be one of the polynomials in Table 5 and let
g(x) = x3+ax2+ bx+ c. Let d be defined as in Proposition 3.1 and h(x) as defined
in Proposition 3.2. Using a computer algebra system, it can be verified that h(x)
is reducible (over Q(t)) precisely in the cases C6, S3, and D6. In particular, for C6,
h(x) factors as x3+(2t2�2t+14)x2+(t4�2t3+15t2�14t+49)x+(t4�2t3+15t2�
14t+49) times x3+(2t2+2t+6)x2+(t4+2t3+7t2+2t+5)x+(t4�2t3�t2+2t+1).
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Table 5. One-parameter families of even sextic polynomials with
specified Galois group over the rationals.

T G Polynomials
1 C6 x6 + (t2 + 5)x4 + ((t� 1)2 + 5)x2 + 1
2 S3 x6 + 3t2

3 D6 x6 + 2t2

4 A4 x6 � 3t4x2 � t6

6 A4 ⇥ C2 x6 � 3t2x2 + t3

7 S+
4 x6 + t2x4 � t6

8 S�
4 x6 + (31t2)2x2 + (31t2)3

11 S4 ⇥ C2 x6 + (2t2)2x2 + (2t2)3

Table 6. Discriminant data for polynomials listed in Table 5.

T G �c d �cd
1 C6 �1 [(t2 � t� 1)(t2 � t+ 7)]2 �[(t2 � t� 1)(t2 � t+ 7)]2

2 S3 �3t2 �3(3t)4 (3t)6

3 D6 �2t2 �3(6t2)2 (6t2)3

4 A4 t6 (3t3)4 (9t9)2

6 A4 ⇥ C2 �t3 (9t3)2 �t(3t2)4

7 S+
4 t6 �23t12 �23t18

8 S�
4 �(31t2)3 �31(31t2)6 (315t9)2

11 S4 ⇥ C2 �(2t2)3 �31(2t2)6 31(2t2)9

For S3, h(x) factors as x3+3t2 times x3+81t2. And for D6, h(x) factors as x3+2t2

times x3 + 54t2.
It remains to analyze whether the following are perfect squares: �c, d, and

�cd. But this is a straightforward computation. The results are listed in Table 6.
Comparing the data in Table 6 and the reducibility of h(x) with the data in Table 4,
it follows that each of the polynomials in Table 5 has the indicated Galois group
(for values of t that result in irreducible polynomials). ⇤

5. Timing Comparisons

As we did with even quartic polynomials, we implemented Algorithm 3.5 in
Pari/GP and compared its timings to the standard Galois group algorithms avail-
able in Magma and Pari/GP. The test polynomials we employed are also available
from [1], and they were computed as described in Section 2. For each of these
polynomials x6 + ax4 + bx2 + c, Table 7 contains the number of digits of a, b, and
c as well as the timings for Algorithm 3.5, Magma, and Pari/GP. All timings are
in milliseconds.

As Table 7 shows, Algorithm 3.5 is significantly faster than the standard Galois
group algorithms implemented in Magma and Pari/GP.
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8. Claus Fieker and Jürgen Klüners, Computation of Galois groups of rational polynomials, LMS
J. Comput. Math. 17 (2014), no. 1, 141–158. MR 3230862

9. Luise-Charlotte Kappe and Bette Warren, An elementary test for the Galois group of a quartic

polynomial, Amer. Math. Monthly 96 (1989), no. 2, 133–137. MR 992075 (90i:12006)
10. PARI Group, The, PARI/GP – Computational Number Theory, version 2.5.3, 2013, available

from http://pari.math.u-bordeaux.fr/.

11. Leonard Soicher, The computation of Galois groups, Master’s thesis, Concordia University,
Montreal, 1981.

12. Leonard Soicher and John McKay, Computing Galois groups over the rationals, J. Number

Theory 20 (1985), no. 3, 273–281. MR MR797178 (87a:12002)
13. Richard P. Stauduhar, The determination of Galois groups, Math. Comp. 27 (1973), 981–996.

MR 0327712 (48 #6054)

14. Barry Trager, Algebraic factoring and rational function integration, Proceedings of the third
ACM symposium on Symbolic and algebraic computation (Yorktown Heights, NY), ACM,

1976, pp. 219–226.
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