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Abstract. Let p and n be odd prime numbers. We study
degree n extensions of the p-adic numbers whose normal clo-
sures have Galois group equal to Dn, the dihedral group of
order 2n. If p - n, the extensions are tamely ramified and are
straightforward to classify; there is a unique such extension if
n | p+ 1 and none otherwise. If p = n, we follow Amano and
show there are six such extensions if p = 3 and three other-
wise. For each extension, we provide a defining polynomial
and compute its inertia subgroup.

1. Introduction

The p-adic numbers Q
p

are foundational to much of 20th and
21st century number theory (e.g., number fields, elliptic curves,
and L-functions) and are connected to many practical applications
in physics, chemistry, and cryptography. Their fundamental impor-
tance is supported by the fact that p-adic numbers play a significant
role in computational attacks on two of the seven Clay Mathematics
Million Dollar Millennium Problems; namely the Riemann Hypoth-
esis and the Birch and Swinnerton-Dyer conjecture.

The Riemann Hypothesis concerns the distribution of prime num-
bers, and the truth of its generalized version would assert the cor-
rectness of the best algorithms for constructing large prime num-
bers, which are used daily for internet public-key cryptosystems.
The Birch and Swinnerton-Dyer conjecture deals with elliptic curves,
and it connects the structure of the group of rational points on an
elliptic curve to properties of its corresponding L-function. The
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most famous application occurs in the proof of Fermat’s Last The-
orem [7], where the key step is to prove that every semistable elliptic
curve is modular.

In all instances, experimentations and computations are routinely
done in p-adic fields, using p-adic methods. Therefore, classifying
p-adic fields through their arithmetic invariants would provide com-
putational support to investigations concerning these two famous
unsolved problems, as well as numerous other unproven conjectures
in number theory (e.g., Bloch-Kato and Stark’s).

Classifying extensions of Q
p

means gathering explicit data that
uniquely determines the extensions, including,

(1) the number of extensions for a given degree, prime, and
discriminant (necessarily finite by a classical result [4, p.54]),

(2) defining polynomials for each extension,
(3) the Galois group of the extension’s polynomial (a di�cult

computational problem in general), and
(4) the inertia subgroup (useful in number field analyses).

In this paper, we study extensions ofQ
p

of prime degree n. If n 6= p,
then all extensions are tamely ramified and items (1)-(4) are well-
understood. We include this case for completeness. If n = p, then
Amano has given defining polynomials for each nonisomorphic ex-
tension [1]. We describe his methods and the tamely ramified case
in Section 3, after giving an overview of p-adic numbers and their
extensions in Section 2. In Section 4, we study the ramification
groups of prime degree p-adic fields to show that the Galois groups
of the polynomials in Section 3 must be solvable with very spe-
cial subnormal series. In the final section, we solve items (1), (2),
and (4) for extensions whose normal closures have dihedral Galois
group.

2. Background

In this section, we give a brief overview of p-adic numbers and
their extensions, introducing only those definitions and results that
are used in the sequel. For more details, we refer the reader to [2],
which contains a good elementary account of p-adic numbers. More
advanced treatments can be found in [4] and [6].

2.1. The P-adic Numbers. The p-adic numbers are constructed
from the rationals in much the same way the reals are constructed.
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In particular, consider the map v

p

: Q ! Z [ {1} defined by

v

p

(x) =

(
n if x = p

n

a/b with p - ab
1 if x = 0

The function v

p

is called the p-adic valuation and it gives rise to
the p-adic absolute value | · |

p

in the following way,

|x|
p

=
1

p

vp(x)
for all x 2 Q

The p-adic numbers are defined as the completion of Q with respect
to this absolute value. The field Q

p

has characteristic 0 and is a
locally compact, totally disconnected Hausdor↵ topological space
[2, p.63].

The ring of p-adic integers Z
p

is defined as

Z
p

= {x 2 Q
p

: |x|
p

 1}
The ring Z

p

is compact and has a unique maximal ideal; namely
pZ

p

. The residue field is defined as Z
p

/pZ
p

and is isomorphic to the
finite field with p elements F

p

. Every element of Q
p

can be written
in the form x/p

n for some x 2 Z
p

and some nonnegative integer n.
Moreover, every element of Z

p

can be represented uniquely as an
infinite sum in “base p” [2, p.68]

Z
p

=

( 1X

k=0

a

k

p

k : a
k

2 Z with 0  a

k

 p� 1

)

2.2. Extensions of Q
p

. By an extension field of Q
p

, we mean any
field K containing Q

p

. Notice that this implies K is a vector space
over Q

p

, and we say K is a finite extension if its dimension as a Q
p

vector space is finite. We write

[K : Q
p

] = dimQpK

and call this number the degree of the extension.
Let K/Q

p

be a finite extension. The set of all automorphisms on
K which induce the identity on Q

p

forms a group under function
composition, called the automorphism group of K. The mass of
K/Q

p

is defined as the degree of the extension divided by the size
of its automorphism group,

m(K) = [K : Q
p

]/|Aut(K/Q
p

)|
If m(K) = 1, then K is called a Galois extension and Aut(K/Q

p

)
is called the Galois group of K.



4 CHAD AWTREY AND TREVOR EDWARDS

Since Q
p

has characteristic 0, an extension field arises by adjoin-
ing to Q

p

the root of some monic irreducible polynomial over Z
p

.
By Krasner’s Lemma [4, p.43], this polynomial can be chosen to
have integer coe�cients. Indeed, the polynomials in the next sec-
tion will all lie in Z[x]. For an extension K/Q

p

with n = [K : Q
p

]
and an element x 2 K, let f(y) = y

d + a

d�1y
d�1 + · · ·+ a1y+ a0 be

its minimal polynomial. We define the norm of x from K down to
Q

p

as,

N

K/Qp(x) = (�1)nf(0)n/d

The norm is used to define the p-adic absolute value on K that
extends the p-adic absolute value on Q

p

[2, p.151]. For x 2 K, we
define

|x| = n

q��
N

K/Qp(x)
��
p

The p-adic absolute value on an extension K gives rise to the cor-
responding p-adic valuation v

p

on K by using the equation

|x|
p

=
1

p

vp(x)

where v

p

(0) = 1.
The p-adic valuation is a homomorphism from the multiplicative

group K

⇤ to the addivite group Q. Its image is of the form (1/e)Z
where e | [K : Q

p

] [2, p.159]. We call e the ramification index

of K/Q
p

. Let f = [K : Q
p

]/e. We call f the residue degree of
K/Q

p

. Any element in K whose p-adic valuation equals e is called
a uniformizer. If e = 1, the extension is called unramified. If
e = [K : Q

p

], the extension is called totally ramified. If p - e, the
extension is called tamely ramified.

The ring of integers in K/Q
p

is defined as

O
K

= {x 2 K : |x|
p

 1} = {x 2 K : v
p

(x) � 0}
It is compact with a unique maximal ideal, given by

P
K

= {x 2 K : |x|
p

< 1} = {x 2 K : v
p

(x) > 1}
The residue field of K/Q

p

is equal to O
K

/P
K

and is isomorphic to
the finite field with p

f elements F
p

f , where f is the residue degree
of K. Moreover, pO

K

= ⇡

eO
k

= Pe

K

, where ⇡ is any uniformizer
and e is the ramification index of K.



DIHEDRAL p-ADIC FIELDS 5

3. Defining Polynomials

In this section, we give defining polynomials for prime degree
extensions of Q

p

. Such extensions are either unramified or totally
ramified. The unramified extensions are easy to describe, there
being a unique one for each degree. This extension is cyclic, and
a defining polynomial can be obtained by extending the residue
field F

p

[4, p.48]. Therefore we focus on totally ramified extensions
of prime degree n, which are given by Eisenstein polynomials [2,
p.164]. There are two cases to consider; p = n and p 6= n.

If p 6= n, the totally ramified extensions of Q
p

of degree n are
necessarily tamely ramified and are completely classified by the
following well-known result [4, p.52].

Theorem 3.1 (Tamely Ramified Polynomials). Let n 6= p be

prime numbers and let g = gcd(n, p�1). Let ⇣ be a primitive (p�1)-
st root of unity. There are g totally ramified degree n extensions of

Q
p

, each with mass n/g. These extensions are defined by the the

polynomials

x

n � ⇣

r

p

where 0  r  g � 1.

If p = n, the totally ramified extensions of Q
p

of degree p are
classified by the following result due to Amano [1].

Theorem 3.2 (Amano Polynomials). Let p > 2 be a prime

number. There are p

2
totally ramified degree p extensions of Q

p

.

Polynomials defining these extensions can be grouped into three

families.

(i) x

p � px

p�1 + ap

2 + p, where 0  a  p� 1,
(ii) x

p + ap

2 + p, where 0  a  p� 1, and
(iii) x

p + apx

b + p, where 1  a, b  p� 1 and ab 6= (p� 1)2.

4. Ramification Groups

The aim of this section is to introduce the basic properties of
ramification groups and use those to deduce structural informa-
tion about Galois groups of the polynomials in Section 3. A more
detailed exposition can be found in [6].

Suppose K/Q
p

is a Galois extension with Galois group G. For
an integer i � �1, we define the i-th ramification group of G to be
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the following set,

G

i

= {� 2 G : v
p

(�(x)� x) � i+ 1 for all x 2 O
K

}
The ramification groups form a decreasing sequence of normal sub-
groups of G which are eventually trivial. We note that G�1 = G,
and we call G0 the inertia subgroup of G. The ramification groups
give structural information about the Galois group G.

Lemma 4.1. LetK/Q
p

be a Galois extension with Galois group

G, and let G

i

denote the i-th ramification group. Let U0 denote

the units in K. That is U0 = {x 2 K : v
p

(x) = 0}. For i � 1, let
U

i

= 1 + P i

K

.

(a) For i � 0, G
i

/G

i+1 is isomorphic to a subgroup of U

i

/U

i+1.

(b) The group G0/G1 is cyclic and isomorphic to a subgroup

of the group of roots of unity in the residue field of K. Its

order is prime to p.

(c) The quotients G

i

/G

i+1 for i � 1 are abelian groups and are

direct products of cyclic groups of order p. The group G1 is

a p-group.

(d) The group G0 is the semi-direct product of a cyclic group

of order prime to p with a normal subgroup whose order is

a power of p.

(e) The groups G0 and G are both solvable.

Proof. We note that U0/U1 is isomorphic to the multiplicative
group of the residue field of K. For i � 1, U

i

/U

i+1 is isomorphic
to the additive group of the residue field. Let ⇡ be a uniformizer
for K. Part (a) follows from considering the map f : G

i

/G

i+1 !
U

i

/U

i+1 defined by f(�) = �(⇡)/⇡. It follows that f is an injective
homomorphism, independent of choice of uniformizer. Part (b)
follows from part (a). Since every subgroup of the residue field is a
vector space over F

p

, every subgroup of U
i

/U

i+1 is a direct sum of
cyclic groups of order p. That G1 is a p-group follows since

|G1| =
Y

i=1

|G
i

/G

i+1|,

which proves part (c). Since G0 and G1 have relatively prime order,
there exists a subgroup of G0 that projects isomorphically onto
G0/G1 ([3, p.230]), proving part (d). Since G/G0 is isomorphic to
the Galois group of the residue field, it is cyclic. Part (e) follows
from general results on solvability. ⇤
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Using Lemma 4.1, the fundamental theorem of Galois theory, and
the classification of solvable transitive subgroups of prime degree
[5, p.195], we have the following.

Corollary 4.2. Suppose K/Q
p

is Galois with ramification in-

dex e, residue degree f , and ramification groups G

i

. Let K

u

be the

fixed field of G0 and K

t

be the fixed field of G1. Then we have,

(1) |G/G0| = [Ku : Q
p

] = f and |G0| = [K : Ku] = e,

(2) K

u

/Q
p

is unramified, K

t

/K

u

is tamely ramified, and K/K

u

is totally ramified,

(3) if K/Q
p

is tamely ramified, then G1 is trivial and G0 is

cyclic, and

(4) the Galois group G of an irreducible polynomial over Q
p

of

prime degree n is a solvable transitive subgroup of S

n

and

is therefore of the form C

n

: C
d

where d | n� 1.

5. Dihederal P-adic Fields

In this section we compute the number of nonisomorphic exten-
sions of Q

p

of prime degree whose Galois groups are dihedral. In
each case, we also compute the inertia subgroup. First we consider
the tamely ramified extensions. We end with a discussion of the
dihedral p-adic fields of degree p.

Theorem 5.1 (Tamely Ramified Galois and Inertia Groups).
Let n 6= p be prime numbers and let K/Q

p

be a finite extension of

degree n. The Galois group of the normal closure of K is D

n

if and

only if p ⌘ �1 (mod n). In this case, the extension is unique up

to isomorphism, defined by the polynomial x

n � p, and the inertia

subgroup is cyclic of order n.

Proof. By Theorem 3.1, there are g = gcd(p�1, n) nonisomorphic
extensions ofQ

p

of degree n, each with mass n/g. If p ⌘ 1 (mod n),
then there are n degree n extensions of Q

p

, each with mass 1.
This implies that all extensions are Galois of prime degree n, hence
cyclic. Thus if the Galois group of the normal closure of K/Q

p

is
D

n

, it is necessary that n - p�1. In this case, there will be a unique
extension, and its defining polynomial can be chosen as xn�p. Let
⇣ be a primitive n-th root of unity. Then K = Q

p

( n
p
p) and the

normal closure Kgal of K is given by K(⇣). It follows that K(⇣)/K
is unramified and generated by the Frobenius element which sends
x to x

p [6, p.77]. Thus [K(⇣) : K] = d where d is the multiplicative
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order of p modulo n; that is, d is the smallest positive integer such
that p

d ⌘ 1 (mod n). Thus the ramification index of K

gal is n

and the residue degree is d. By Corollary 4.2, the Galois group of
K

gal
/Q

p

is C
n

: C
d

and the inertia subgroup is C
n

. It follows that
the Galois group of the normal closure of K/Q

p

is dihedral if and
only if d = 2 if and only if p ⌘ �1 (mod n). ⇤

Theorem 5.2 (Dihedral P -adic Fields of Degree P ). Let p > 2
be a prime number.

(1) If p = 3, there are six nonisomorphic cubic extensions of

Q3 whose normal closures have Galois group equal to D3.

Polynomials defining these extensions can be chosen to be

the Amano polynomials of type (ii) and (iii) in Theorem

3.2. The inertia subgroups for these fields are all D3 with

the exception of the field defined by x

3 + 3x2 + 3, whose
inertia subgroup is cyclic of order 3.

(2) If p > 3, there are three nonisomorphic degree p extensions

of Q
p

whose normal closures have Galois group equal to

D

p

. These extensions are defined by the polynomials x

p +
px

p�1 + p, x

p +2px(p�1)/2 + p, and x

p + (p� 2)px(p�1)/2 + p.

The inertia subgroup of the field defined by x

p+px

p�1+p is

cyclic of order p. The other two fields have inertia subgroup

equal to D

p

.

Proof. Let K/Q
p

be one of the p

2 degree p extensions. Then
K = Q

p

(⇡) where ⇡ is a root of one of the polynomials in Theorem
3.2. Let G be the Galois group of this polynomial, and let G

i

be
the ramification groups. Then [1] proves the normal closure K

gal

of K is equal to Q
p

(⇡,↵) where Q
p

(↵) is the fixed field of G1 and
↵

p�1 2 Q
p

. Since Q
p

contains the (p�1)-st roots of unity [2, p.72],
the extension Q

p

(↵)/Q
p

is cyclic and G1 = C

p

. If ⇡ is the root
of a type (i) Amano polynomial, [1] proves that [Q

p

(↵) : Q
p

] = 1,
and therefore K is Galois of degree p with G = G0 = C

p

. If ⇡ is
the root of a type (ii) Amano polynomial, [1] proves that ↵ can be
chosen to be a primitive p-th root of unity, and K

gal
/Q

p

is totally
ramified with G = G0 = C

p

: C
p�1.

Suppose now that ⇡ is a root of a type (iii) Amano polynomial,
and let d = [Q

p

(↵) : Q
p

]. Let g = gcd(p � 1, b) and let r be the
multiplicative order of ab modulo p. Then [1] proves the maximal
unramified subextension of Kgal

/Q
p

is given by Q
p

(�) where �

g =
ab and ↵

(p�1)/g = �p

b/g. Thus |G0/G1| = [Q
p

(↵) : Q
p

(�)] = (p �
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1)/g. This proves the inertia subgroup G0 = C

p

: C(p�1)/g. Since
gcd(p, ab) = 1, it follows that ab is a (p� 1)/r power of a generator
of F⇤

p

. This proves |G/G0| = [Q
p

(�) : Q
p

] = g/ gcd(g, (p � 1)/r).
Thus d = |G/G1| = |G/G0||G0/G1| = (p � 1)/ gcd(g, (p � 1)/r),
and the Galois group G = C

p

: C
d

.
If p = 3, we see that of the nine cubic extensions of Q

p

, only the
six polynomials of type (ii) and (iii) give rise to dihedral extensions.
These polynomials are x3+3, x3+12, x3+21, x3+3x+3, x3+6x+3,
and x

3+3x2+3. Computing inertia groups for these six polynomials
shows that all have inertia group equal to D3 except the polynomial
x

3 + 3x2 + 3, which has cyclic inertia group.
Suppose now that p > 3. Dihedral extensions arise precisely

when the Galois group of the normal closure is C
p

: C2; i.e., if and
only if K is defined by a type (iii) Amano polynomial with d = 2.
Thus, we are led to consider polynomials of the form x

p+ apx

b+ p.
In order that d = 2, it is necessary and su�cient that (p� 1)/2 =
gcd(g, (p�1)/r), where g = gcd(p�1, b) and r is the multiplicative
order of ab modulo p. There are three cases to consider: (1) r = 2
and g = p � 1, (2) r = 2 and g = (p � 1)/2, and (3) r = 1 and
g = (p� 1)/2.

Case (1) is equivalent to r = 2 and b = p � 1. Since the only
element of order 2 in F⇤

p

is congruent to �1 modulo p, we must
have a = 1. This produces the pair [a, b] = [1, p � 1]. Case (2) is
equivalent to r = 2 and b = (p � 1)/2, and therefore a = 2. This
produces the pair [a, b] = [2, (p � 1)/2]. Case (3) is equivalent to
r = 1 and b = (p � 1)/2. Since b ⌘ �1/2 (mod p), it must be the
case that a ⌘ �2 (mod p). Taking a = p � 2 produces the pair
[a, b] = [p� 2, (p� 1)/2].

Together these three cases produce the polynomials listed in the
statement of the theorem. Thus there are precisely three degree p

extensions of Q
p

whose normal closures have dihedral Galois group
D

p

= C

p

: C2. Since the inertia subgroups for these field are C

p

:
C(p�1)/g, it follows that the field arising from Case (1) has cyclic
inertia group, while the fields arising from Cases (2) and (3) have
dihedral inertia groups. ⇤
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