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Abstract. Let f(x) be a polynomial with integer coe�cients of degree less
than or equal to 7, and assume f is reducible over the rational numbers. We
show how to compute the Galois group of f . The main tools we employ are
composita of irreducible factors, discriminants, and in the case when f is a
degree 7 polynomial, two linear resolvents. For each possible Galois group G,
we provide a reducible polynomial whose Galois group over the rationals is G.

1. Introduction

Let f(x) be a polynomial with integer coe�cients. A fundamental task in com-
putational number theory is the determination of the Galois group G of f over the
rational numbers. When f is irreducible, then many algorithms for determining G
appear in the literature, most of which are based on either the relative resolvent
method [8] or the absolute resolvent method [7]. For example, the implementation
in Magma [1] is based on the relative resolvent method, as described in [10]. The
implementation Pari/GP [5] is based on the absolute resolvent method, as described
in [2].

Less well studied is the case when f is reducible. Magma’s implementation
for computing Galois groups is able to accept reducible polynomials as inputs;
the approach for reducible polynomials is essentially the same as for irreducible
polynomials. See [9] for more details. An alternate approach to computing Galois
groups of reducible polynomials is described in [4]; this method also uses relative
resolvents.

The purpose of this paper is to introduce a method for computing Galois groups
of reducible polynomials that uses linear resolvents [6] (which are absolute resol-
vents) instead of relative resolvents. Therefore, our approach is suitable for imple-
mentation in Pari/GP. Such an implementation is available by contacting the first
author.

The remainder of the paper is organized as follows. Section 2 gives an overview
of the tools we wlll use; namely, discriminants, polynomial composita, and linear
resolvent. Sections 3–6 discuss algorithms for computing Galois groups of reducible
polynomials of degrees 4–7, respectively. The final section lists sample reducible
polynomials for each possible Galois group.
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2. Preliminaries

Throughout the rest of the paper, we will assume that f(x) is a reducible poly-
nomial of degree less than or equal to 7 with integer coe�cients, defined over the
rational numbers. Let f1, . . . , fk denote the nonlinear irreducible factors of f , and
let Gi denote the Galois group of fi over the rational numbers. Note that each Gi

is a transitive subgroup of Sni (the symmetric group) where ni = degree(fi), and

therefore the Galois group G of f is a subgroup of
Qk

i=1 Gi. If k = 1, then this
reduces to the case of computing the Galois group of an irreducible polynomial.

For i, j 2 {1, . . . , k}, we can consider the compositum comp(fi, fj); that is, a
polynomial defining the field extension obtained by adjoining a root of both fi
and fj to the rationals. One way to obtain such a polynomial is to compute the
characteristic polynomial of ↵+ � where fi(↵) = fj(�) = 0. Using resultants, this
can be realized as:

comp(fi, fj) = Resultanty(fi(y), fj(x� y)).

If the resultant is squarefree, we factor it and choose an irreducible factor of largest
degree. Otherwise, we perform a tschirnhaus transformation (see Algorithm 3.6.4
in [2]) on fi until the resultant is squarefree. Note, only finitely many transforma-
tions will yield a resultant that is not squarefree. Note, the Galois group of the
compositum is a subgroup of G. In the case where f factors into two irreducible
polynomials, the compositum of these two factors gives an irreducible polynomial
that defines the splitting field of f . Thus the Galois group of the compositum is
isomorphic to the Galois group of f . The Galois groups of these two factors are an
invariant of G, as the next proposition shows.

Proposition 2.1. Suppose f = f1f2 where each fi is irreducible. Let g = comp(f1, f2)
and let G, G1, and G2 denote the Galois groups of g, f1, and f2 respectively. Then
G1 and G2 are invariants of G. In other words, any irreducible polynomial whose
degree equals that of g and whose Galois group is G must define a field that contains
subfields of the same degrees as f1 and f2 such that the Galois groups of the normal
closures of these subfields are G1 and G2.

Proof. Let K denote the splitting field of g and F its stem field (obtained by adjoin-
ing one root of g to the rationals). By the Galois correspondence, F corresponds
to a subgroup H which is the point stabilizer of 1 in G. Since f1 and f2 define
subfields of K, there exist subgroups H1 and H2 of G such that H  H1, H2  G.
For i = 1, 2, the Galois group of fi is therefore isomorphic to the image of the
permutation representation of G acting on the cosets G/Hi. ⇤

Let di = disc(fi) denote the discriminant of fi. Then di is a perfect square
if and only if Gi is a subgroup of Ani (the alternating group). For each subset
S of {1, . . . , k}, we can consider the integer dS =

Q
i2S di, which is a product of

discriminants of some collection of irreducible factors of f . It follows from the Galois
correspondence that the parity of dS (i.e., whether or not it is a perfect square) is
an invariant of G. We can also utilize the product of dS with various composita to
yield additional invariants of G. Clearly we can simply take the composita of all
fi to obtain an irreducible polynomial of degree 1 + · · ·+ k. One drawback of this
approach is that the degree can be greater than 11, which is beyond the capability
of PARI/GP (but not for Magma). Another drawback is that it is sometimes not
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necessary to compute the Galois group of such a large degree polynomial, since we
can leverage discriminant data and other information instead.

In Section 6, we will make use of two linear resolvent polynomials (as defined
in [7]). In this case, we need an irreducible polynomial g(x) of degree n. For us, n
will be 12. For now, we describe how to compute these resolvents in general.

dp(x2) =
comp(g, g)

2n · g(x/2)

tp(x3) =
comp(dp(g), g) · 3n · g(x/3)

comp(g, 2n · g(x/2))

The degree of dp(x) is
�n
2

�
= n(n � 1)/2 while the degree of tp(x) is

�n
3

�
=

n(n � 1)(n � 2)/6. In the language of [2, §6.3], dp(x) is the linear resolvent of
g associated to the multivariable function T = x1 + x2 that is stabilized by a
subgroup of Sn that is isomorphic to S2 ⇥ Sn�2. Similary, tp(x) is the linear
resolvent of g associated to the function T = x1 + x2 + x3 that is stabilized by a
subgroup isomorphic to S3⇥Sn�3. If the resolvent is squarefree, the degrees of the
irreducible factors correspond to orbit lengths of the Galois group of G acting on
the cosets of the associated subgroup (see [7] for a proof).

In the remaining sections, we reference Table 1, which gives all possible Galois
groups of reducible polynomials up to degree 7. Our notation is of the form nRj
where n is the degree of f and j is an integer. We note that our numbering system
is not standard, as there is no standard numbering system for reducible Galois
groups. Consequently, we also give a structural description of each Galois group as
well as an identification of the group in GAP’s [3] SmallGroups library; the notation
[s, k] means SmallGroup(s,k) in GAP. The structural descriptions are standard;
Cn denotes the cyclic group of order n, En the elementary abelian group of order
n, Sn the symmetric group of order n!, An the alternating group of order n!/2,
Dn the dihedral group of order 2n, Fp = Cp : Cp�1 the Frobenius group of order
p(p� 1) for primes p, ⇥ a direct product, and : a semi-direct product.

3. Degree 4

The algorithm for reducible quartic polynomials is straightforward. The only
case we consider is when f factors as two quadratics f1, f2 and the compositum of
f1 and f2 has degree 4. Otherwise, f is irreducible (once linear factors are removed
and redundant factors are eliminated). In this case, the Galois group G must be
isomorphic to a transitive subgroup of S4 that is itself a subgroup of E4. Thus
G = E4.

4. Degree 5

For reducible quintic polynomials, we only consider the case where f factors as
the product of an irreducible quadratic and an irreducible cubic. Otherwise, we can
use Section 3 or irreducible algorithms. In this case, the compositum of the two
factors will be a degree 6 polynomial whose Galois group is isomorphic to a transitive
subgroup G of S6 that is a subgroup of S3⇥C2 = D6. Thus there are three possible
Galois groups; namely, C6, S3, and D6. Among these 3, only C6 has a cyclic cubic
subfield; which will occur precisely when the discriminant of the cubic is a perfect
square. Otherwise, we can consider the discriminants of the quadratic and cubic
polynomials (which are necessarily not perfect squares). Thus each discriminant
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Table 1. Possible Galois groups of reducible polynomials up to
degree 7. Column R gives the R number of the group, Name
gives a structural description of the group, Size gives the order
of the group, and GAP gives a pair [s,k] such that the group is
SmallGroup(s,k) in GAP’s SmallGroups library.

R Name Size GAP
4R1 E4 2 (4,2)
5R1 S3 6 (6,1)
5R2 C6 6 (6,2)
5R3 D6 12 (12,4)
6R1 C4 ⇥ C2 8 (8,2)
6R2 D4 8 (8,3)
6R3 E8 8 (8,5)
6R4 D4 ⇥ C2 16 (16,11)
6R5 S4 24 (24,12)
6R6 A4 ⇥ C2 24 (24,13)
6R7 S4 ⇥ C2 48 (48,48)
6R8 E9 9 (9,2)
6R9 S3 ⇥ C3 18 (18,3)
6R10 E9 : C2 18 (18,4)
6R11 S3 ⇥ S3 36 (36,10)
7R1 D5 10 (10,1)
7R2 C10 10 (10,2)
7R3 F5 20 (20,3)
7R4 D10 20 (20,4)
7R5 F5 ⇥ C2 40 (40,12)
7R6 S5 120 (120,34)
7R7 A5 ⇥ C2 120 (120,35)
7R8 S5 ⇥ C2 240 (240,189)
7R9 C3 : C4 12 (12,1)
7R10 C12 12 (12,2)
7R11 A4 12 (12,3)
7R12 D6 12 (12,4)
7R13 C6 ⇥ C2 12 (12,5)
7R14 C4 ⇥ S3 24 (24,5)
7R15 D12 24 (24,60)
7R16 (C6 ⇥ C2) : C2 24 (24,8)
7R17 C3 ⇥D4 24 (24,10)
7R18 S4 24 (24,12)
7R19 E4 ⇥ S3 24 (24,14)
7R20 A4 ⇥ C3 36 (36,11)
7R21 D4 ⇥ S3 48 (48,38)
7R22 S4 ⇥ C3 72 (72,42)
7R23 (A4 ⇥ C3) : C2 72 (72,43)
7R24 A4 ⇥ S3 72 (72,44)
7R25 S4 ⇥ S3 144 (144,183)
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defines a quadratic subfield of the splitting field of the compositum. By the Galois
correspondence, these two quadratic subfields correspond to index 2 subgroups of
G. Direct computation shows that these two subgroups are the same when G = S3

and they are not equal when G = D6.

Algorithm 4.1 (Reducible Quintics). Let f(x) = f1f2 be a reducible quintic poly-
nomial where f1 is an irreducible quadratic and f2 is an irreducible cubic. This
algorithm returns the Galois group of f .

(1) Set d1 = disc(f1) and d2 = disc(f2).
(2) If d2 is a perfect square, return 5R2 and terminate.
(3) Else, if d1d2 is a perfect square, return 5R1 and terminate. Otherwise

return 5R3 and terminate.

5. Degree 6

For reducible sextic polynomials, we consider three cases: where f factors as (1)
three irreducible quadratics; (2) two irreducible cubics; (3) and the product of an
irreducible quadratic and an irreducible quartic.

5.1. Three Quadratics. This case is similar to Section 3. In particular, we will
assume that the compositum of all three quadratics has degree 8. Otherwise, we
can reduce down to either a quartic polynomial (in which case the Galois group is
E4) or a quadratic. In this case, the Galois group must be a transitive subgroup G
of S8 that is itself a subgroup of E8. Thus G = E8.

5.2. A Quadratic and a Quartic. If f factors as the product of an irreducible
quadratic f1 and an irreducible quartic f2, we will assume the compositum g of f1
and f2 has degree 8. Otherwise, this reduces to the case of an irreducible quartic.
Thus the Galois groupGmust be a transitive subgroup of S8 that is itself a subgroup
of S2 ⇥ S4. Furthermore, G contains at least one quadratic subfield and at least
one quartic subfield. There are exactly 7 possibilities for G; namely, C4 ⇥ C2, D4,
E8, D4 ⇥C2, S4, A4 ⇥C4, or S4 ⇥C4. If the Galois group H of f2 is either C4, E4,
or A4, then G = H ⇥ C2. Otherwise, G is determined by whether or not d1d2 is
a perfect square. As before, all statements follow from Proposition 2.1 and direct
computation on the possible Galois groups.

Algorithm 5.1 (Reducible Sextics (An Irreducible Quadratic and Irreducible Quar-
tic)). Let f(x) = f1f2 be a reducible sextic polynomial where f1 is an irreducible
quadratic and f2 is an irreducible quartic. Let g(x) = comp(f1, f2) and assume
degree(g) = 8. This algorithm returns the Galois group of f .

(1) Set H equal to the Galois group of f2.
(2) Partial answer.

(a) If H = C4, return 6R1 and terminate.
(b) If H = E4, return 6R3 and terminate.
(c) If H = A4, return 6R5 and terminate.

(3) Set d1 = disc(f1) and d2 = disc(f2).
(4) If H = D4, then

(a) If d1d2 is a perfect square, return 6R2 and terminate.
(b) Otherwise return 6R4 and terminate.

(5) If H = S4, then
(a) If d1d2 is a perfect square, return 6R6 and terminate.
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(b) Otherwise return 6R7 and terminate.

5.3. Two Cubics. If f factors as two irreducible cubics f1 and f2, we will assume
that f1 and f2 do not define the same extension (i.e., their compositum has degree
9). Otherwise, this reduces to the case of an irreducible cubic polynomial. Thus
the Galois group G must be a transitive subgroup of S9 that is itself a subgroup
of S3 ⇥S3. Furthermore, G contains either two cyclic cubic subfields, two S3 cubic
subfields, or one of each. There are only 4 possibilities: E9, S3 ⇥ C3, E9 : C2, and
S3 ⇥ S3. If there are two cyclic cubic subfields, the G = E9. If there is only one
cyclic cubic subfield, G is S3⇥C3. Otherwise, G is determined by the parity of the
discriminant of the compositum of the two cubic subfields. If the discriminant is
a perfect square, G = E9 : C2; otherwise, G = S3 ⇥ S3. All statements follow by
direct computation on the four possibilities, utilizing Proposition 2.1.

Algorithm 5.2 (Reducible Sextics (2 Irreducible Cubics)). Let f(x) = f1f2 be a
reducible sextic polynomial where each fi is an irreducible cubic polynomial. Let
g(x) = comp(f1, f2) and assume degree(g) = 9. This algorithm returns the Galois
group of f .

(1) Set d1 = disc(f1) and d2 = disc(f2).
(2) If both d1 and d2 are perfect squares, return 6R8 and terminate.
(3) If exactly one of d1 and d2 is a perfect square, return 6R9 and terminate.
(4) Set g = comp(f1, f2) and d3 = disc(g).
(5) If d3 is a perfect square, return 6R10 and terminate. Otherwise return

6R11 and terminate.

6. Degree 7

For reducible septic polynomials, we again consider three cases: where f factors
as the product of (1) an irreducible quadratic and an irreducible quintic; (2) two
irreducible quadratics and an irreducible cubic; (3) and an irreducible cubic and an
irreducible quartic.

6.1. A Quadratic and a Quintic. If f factors as the product of an irreducible
quadratic f1 and an irreducible quintic f2, then the compositum g of f1 and f2 has
degree 10. Thus the Galois group G must be a transitive subgroup of S10 that is
itself a subgroup of S2⇥S5. Furthermore, G contains at least one quadratic subfield
and at least one quintic subfield. There are 8 possibilities for G; namely, C10, D5,
F5, D10, F5 ⇥ C2, S5, A5 ⇥ C2, and S5 ⇥ C2. If the Galois group H of f2 is either
C5 or A5, then G = H ⇥ C2. When H is either F5 or S5, then G is determined by
whether or not d1d2 is a perfect square. When H = D5, then G is determined by
the degree of comp(g, g).

Algorithm 6.1 (Reducible Septics (An Irreducible Quadratic and Irreducible Quin-
tic)). Let f(x) = f1f2 be a reducible septic polynomial where f1 is an irreducible
quadratic and f2 is an irreducible quintic. Let g(x) = comp(f1, f2). This algorithm
returns the Galois group of f .

(1) Set H equal to the Galois group of f2.
(2) Partial answer.

(a) If H = C5, return 7R2 and terminate.
(b) If H = A5, return 7R7 and terminate.

(3) Set d1 = disc(f1) and d2 = disc(f2).
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(4) If H = F5, then
(a) If d1d2 is a perfect square, return 7R3 and terminate.
(b) Otherwise return 7R5 and terminate.

(5) If H = S5, then
(a) If d1d2 is a perfect square, return 7R6 and terminate.
(b) Otherwise return 7R8 and terminate.

(6) Set h = comp(g, g).
(7) If the degree of h is 10, return 7R1 and terminate. Otherwise return 7R4

and terminate.

6.2. Two Quadratics and a Cubic. If f factors as the product of two irreducible
quadratics f1, f2 and an irreducible cubic f3, we will assume the compositum g of
f1, f2, and f3 has degree 12. Otherwise, this reduces to the case of a reducible
quintic. Thus the Galois group G must be a transitive subgroup of S12 that is itself
a subgroup of E4 ⇥ S3. Furthermore, G contains at least two quadratic subfields
and at least one cubic subfield. There are 3 possibilities for G; namely, D6, C6⇥C2,
and E4 ⇥ S3. If the Galois group of f3 is C3, then G = C6 ⇥C2. Otherwise, G has
three quadratic subfields whose discriminants are d1, d2, and d1d2. If one of these
fields defines the same field as x2

�disc(f3), then G = D6. Otherwise G = E4⇥S3.

Algorithm 6.2 (Reducible Septics (Two Irreducible Quadratics and an Irreducible
Cubic)). Let f(x) = f1f2f3 be a reducible septic polynomial where f1 and f2 are ir-
reducible quadratics and f3 is an irreducible cubic. Let g(x) = comp(comp(f1, f2), f3)
and assume degree(g) = 12. This algorithm returns the Galois group of f .

(1) Set d1, d2, and d3 equal to the discriminant of f1, f2, and f3 respectively.
(2) If d3 is a perfect square, return 7R13 and terminate.
(3) Set c1 = d1d3, c2 = d2d3, and c3 = d1d2d3.
(4) If none of c1, c2, c3 are perfect squares, return 7R20 and terminate. Other-

wise return 7R12 and terminate.

6.3. A Cubic and a Quartic. If f factors as the product of an irreducible cubic
f1 and an irreducible quarticf2, then their compositum g has degree 12. Then the
Galois group G of f is isomorphic to the Galois group of g. Thus G must be a
transitive subgroup of S12 that is itself a subgroup of S3 ⇥ S4. Furthermore, G
contains a cubic subfield and a quartic subfield. This is the most di�cult case
considered in this paper, as there are 17 possibilities for G. These are C3 : C4, C12,
A4, D6, C6 ⇥ C2, C4 ⇥ S3, D12, (C6 ⇥ C2) : C2, C3 ⇥ D4, S4, E4 ⇥ S3, A4 ⇥ C3,
D4 ⇥ S3, S4 ⇥C3, (A4 ⇥C3) : C2, A4 ⇥ S3, and S4 ⇥ S3. If H1 is the Galois group
of f1 and H2 is the Galois group of f2, then H1 and H2 determine G in 5 cases.
If degree(comp(g, g)) = 12, then H1 and H2 determine G in 6 additional cases.
The remaining cases require the absolute resolvents tp(x) and dp(x) referenced in
Section 2.

Algorithm 6.3 (Reducible Septics (Irreducible Cubic and Irreducible Quartic)).
Let f(x) = f1f2 be a reducible septic polynomial where fi is an irreducible cubic
polynomial and f2 is an irreducible quartic polynomial. Let g(x) = comp(f1, f2).
This algorithm returns the Galois group of f .

(1) Set d1 = disc(f1), d2 = disc(f2), H1 the Galois group of f1, and H2 the
Galois group of f2.

(2) Partial answer.
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(a) If (H1, H2) = (C3, C4), return 7R10 and terminate.
(b) If (H1, H2) = (C3, E4), return 7R13 and terminate.
(c) If (H1, H2) = (C3, D4), return 7R17 and terminate.
(d) If (H1, H2) = (C3, S4), return 7R22 and terminate.
(e) If (H1, H2) = (S3, A4), return 7R24 and terminate.

(3) Set h = comp(g, g).
(4) If (H1, H2) = (C3, A4), then

(a) If degree(h) = 12, return 7R11 and terminate.
(b) Otherwise return 7R20 and terminate.

(5) If (H1, H2) = (S3, C4), then
(a) If degree(h) = 12, return 7R9 and terminate.
(b) Otherwise return 7R14 and terminate.

(6) If (H1, H2) = (S3, E4), then
(a) If degree(h) = 12, return 7R12 and terminate.
(b) Otherwise return 7R19 and terminate.

(7) Set t equal to the list of degrees of irreducible factors of tp(g).
(8) If (H1, H2) = (S3, S5), then

(a) If t = [4, 4, 8, 12, 12, 12, 24, 24, 24, 24, 24, 24, 24], return 7R18 and ter-
minate.

(b) If t = [4, 12, 12, 12, 36, 72, 72], return 7R23 and terminate.
(c) If t = [4, 12, 24, 36, 72, 72], return 7R25 and terminate.

(9) If t = [4, 12, 12, 24, 24, 24, 24, 48, 48], return 7R21 and terminate.
(10) If t = [4, 12, 12, 12, 12, 12, 12, 24, 24, 24, 24, 24, 24], return 7R16 and termi-

nate.
(11) Set d equal to the list of degrees of irreducible factors of dp(g).
(12) If d = [6, 12, 12, 12, 12, 12], return 7R15 and terminate. Otherwise return

7R16 and terminate.

We note that in Steps (10) and (12) of Algorithm 6.3, a Galois group of 7R16 =
(C6 ⇥ C2) : C2 is returned. The reason why the Galois group occurs twice here
is because as a transitive subgroup of S12, the group 7R16 occurs as two non-
conjugate representations. Using GAP’s transitive group library, Step (10) returns
TransitiveGroup(12,15) while Step (12) returns TransitiveGroup(12,13).

7. Polynomial List

In this section we list reducible polynomials for each possible Galois group ap-
pearing in Table 1. Table 2 lists the polynomials (in factored form). Column
headers are the same as in Table 1.
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Table 2. Sample polynomials for each possible Galois group ap-
pearing in Table 1.

R Name Size Polynomial
4R1 E4 2 (x2 + 1)(x2 + 2)
5R1 S3 6 (x2 + 3)(x3 + 2)
5R2 C6 6 (x2 + 1)(x3

� 3x+ 1)
5R3 D6 12 (x2 + 1)(x3 + 2)
6R1 C4 ⇥ C2 8 (x2 + 1)(x4 + 4x2 + 2)
6R2 D4 8 (x2

� 2)(x4 + 2)
6R3 E8 8 (x2 + 2)(x4 + 1)
6R4 D4 ⇥ C2 16 (x2 + 1)(x4 + 2)
6R5 S4 24 (x2

� 229)(x4 + x+ 1)
6R6 A4 ⇥ C2 24 (x2 + 1)(x4

� 7x2
� 3x+ 1)

6R7 S4 ⇥ C2 48 (x2 + 1)(x4 + x+ 1)
6R8 E9 9 (x3

� 3x+ 1)(x3
� x2

� 2x+ 1)
6R9 S3 ⇥ C3 18 (x3

� 3x+ 1)(x3 + 2)
6R10 E9 : C2 18 (x3 + 2)(x3 + 3)
6R11 S3 ⇥ S3 36 (x3 + 2)(x3 + 4)
7R1 D5 10 (x2

� x+ 12)(x5
� 2x4 + 2x3

� x2 + 1)
7R2 C10 10 (x2 + 1)(x5

� x4
� 4x3 + 3x2 + 3x� 1)

7R3 F5 20 (x2
� 2x� 12)(x5

� x4 + 2x3
� 4x2 + x� 1)

7R4 D10 20 (x2 + 1)(x5
� 2x4 + 2x3

� x2 + 1)
7R5 F5 ⇥ C2 40 (x2 + 1)(x5

� x4 + 2x3
� 4x2 + x� 1)

7R6 S5 120 (x2 + 1)(x5
� x4 + 3x2

� 6x+ 2)
7R7 A5 ⇥ C2 120 (x2 + 1)(x5

� x4 + 2x2
� 2x+ 2)

7R8 S5 ⇥ C2 240 (x2 + 1)(x5
� x4

� x3 + x2
� 1)

7R9 C3 : C4 12 (x3
� 12x� 14)(x4

� x3 + x2
� x+ 1)

7R10 C12 12 (x3
� 3x+ 1)(x4 + 4x2 + 2)

7R11 A4 12 (x3
� x2

� 20x+ 9)(x4
� 7x2

� 3x+ 1)
7R12 D6 12 (x3

� 3)(x4
� 2x2 + 4)

7R13 C6 ⇥ C2 12 (x3
� 3x+ 1)(x4 + 1)

7R14 C4 ⇥ S3 24 (x3 + 2)(x4 + 4x2 + 2)
7R15 D12 24 (x3 + 3x� 3)(x4

� x3
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